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ABSTRACT

This dissertation proposes "feedback control" techniques to achieve the desirable 

solid-liquid interface shape during crystal growth to produce high quality material. The 

feedback controller is designed utilizing a state-space model of the crystal-growth process. 

This model is obtained by lumping the governing equations determined using the apparent 

heat capacity formulation through finite-elements.

To gain insight into the control design procedures, the heat conduction problem 

with no phase change is first considered. Here, a controller is designed using the standard 

design techniques to improve the transient response and to establish a desirable 

temperature distribution inside the material. A similar approach is taken to design 

controllers that would establish an arbitrary temperature distribution and, hence, the 

interface shape for heat conduction problems with phase change. Some general conditions 

are derived for the existence of a boundary control to establish a given temperature 

distribution in the steady-state.

The proposed control method is used to establish a certain distribution on a 

simulated heat conduction system. Control simulation results are presented for the heat- 

conduction system with no phase change and then for the system with phase-change 

problem.

The system designed by the proposed technique is able to translate the interface at 

the desired rate while maintaining the desired interface shape. The results validate the use 

of feedback control techniques for the boundary control of a diffusion dominated crystal 

growth problem.
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CHAPTER I 

INTRODUCTION

In recent years, there has been a considerable interest in the directional 

solidification processing technique to develop materials with improved structural 

properties. In this approach, the molten material enclosed in an ampoule is subjected to a 

temperature gradient that includes its solidification temperature. An important objective is 

to produce material with desirable structural properties consistently. Examples of desired 

structural properties are reduced residual thermal stress, higher yield strength, material 

toughness, and a homogenous refractive index.

One way to achieve the desired objective is to measure the structural property "on­

line" and modify the process parameters, i.e., the temperature gradient and translation rate 

of the ampoule accordingly. However, the implementation of this procedure poses several 

practical problems:

(a) On-line measurements of the structural property are not possible.

(b) The relationship between the structural property and the axial temperature 

gradient, translation rate in the furnace is not known. Hence, even if the measurements 

are available, it would be difficult to use them for controlling the process.

(c) It is difficult to maintain an arbitrary temperature gradient around the ampoule. 

There are other intermediate quantities that are related to the structural property.

The interface shape during solidification determines the crystal quality. Another important 

parameter that controls the growth rate of the material is the translation rate of the 

ampoule. For example, a flat interface would yield reduced thermal stresses in the 

material. Hence, the crystal quality can be significantly improved by varying the

1
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temperature gradient and setting the translation rate optimally inside the furnace to 

produce the desirable interface shape during the crystal growth process. The statements 

(a), (b), and (c) given above are pertinent as discussed in the rest of this Section.

Regarding the issue in (a), the interface shape can be directly measured through X- 

rays in the case of non-transparent material or by image processing techniques for 

transparent furnaces. Also, it is possible to predict the interface shape by measuring 

auxiliary quantities such as the ampoule surface temperature. A mathematical model 

obtained by considering the physics of the problem can be used for this purpose.

With respect to the issue in (b), it is difficult to find the furnace temperature 

gradient and the translation rate that would yield the desirable interface shape. In the past, 

the furnace operator would tune the temperature gradients and the translation rate to 

achieve this. More recently, an optimization approach [1] has been taken to determine the 

temperature gradient. This approach cannot take advantage of any on-line measurements 

to correct any modeling errors. In control terminologies, this approach just yields "open- 

loop" temperature gradients. This work proposes a new approach to determine the 

furnace temperature gradient by using the on-line measurements to establish a desired 

interface shape and the grow the crystal at a desired translation rate.

Regarding the issue in (c), the furnace provides the hardware to establish the 

temperature gradient that is requested by the controller. Many types of furnaces are 

available, of which the multi-zone furnaces allow for a variety o f temperature profiles 

inside the furnace. Here, an increased number of zones can implement the required 

temperature profile across the ampoule more accurately.

1.1 Proposed Technique

A new approach is proposed to model the crystal growth process and control the 

shape of the interface and the crystal growth rate by making use of all available
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measurements. The ultimate aim o f this research is to achieve the desired interface shape 

and growth rate by altering the temperature profile at the boundary. The heat transfer 

process that determines the interface shape is modeled using the Finite Element (FE) 

technique. This model is utilized to predict the interface shape (in situations where the 

interface cannot be directly measured) and also to determine the required temperature 

gradients.

1.2 Crystal Growth Modeling

The crystal growth problem can be modeled through a set of Partial Differential 

Equations (PDE) with appropriate Boundary Conditions (BC). The interface shape during 

crystal growth is determined by conduction, convection and radiation heat transfer modes. 

Depending on the materials, one mode of heat transfer is significantly more dominant than 

the other. For example, in the case o f the electronic and photonic materials, heat 

conduction is the dominant mode due to high magnitude of thermal conductivity. This 

work attempts to demonstrate some of the capabilities of feedback controls. In an effort 

to keep the problem simple, only the conduction heat transfer mode is assumed to 

determine the temperature distribution inside the material.

The heat conduction process is described by a set of PDEs and in control 

terminology represents a Distributed Parameter System (DPS). In the controls area, it is 

customary to describe a system by a set of Ordinary Differential Equations (ODE). The 

PDEs, conceptually, can be considered as infinite dimensional ODEs. Thus, this research 

addresses into the topic o f DPS or infinite dimensional systems. Research in these areas 

has been very active in the last decade, especially, with regard to space structures.

Most o f the existing techniques handle this problem by approximating (lumping) 

the infinite dimensional system with a finite dimensional system. In this dissertation, a 

spatially lumped model of the system is obtained through FE technique. This model is in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

the standard state-space form and can be directly used to determine the necessaiy 

temperature gradients. The nodal temperatures are the state variables, the parameterized 

temperature gradients are the inputs and all available measurements, such as the ampoule 

surface temperature, and interface location, form the output of the system.

1.3 Controller Design

The FE based state-space model can be used to determine the necessary inputs 

(temperature gradients) so that a desired temperature distribution (interface shape) is 

established inside the material. The model has many state variables and relatively few 

inputs and measurements. Hence, it is natural to expect some of the state variables (nodal 

temperatures) to be completely/weakly controllable or observable. These state variables 

cannot be used for feedback and hence the controller is designed using a reduced order 

model. The controller designed using the reduced order model may not be able to 

produce an arbitrary temperature distribution inside the material (interface shape). Some 

necessary and sufficient conditions for the requested temperature distribution to be 

achievable are derived in this dissertation.

1.4 Organization of the Dissertation

The need for interface shape control is motivated by the objective of producing 

materials with improved structural properties. A method for controlling the shape of the 

interface is proposed in this work. In Chapter II, a brief study of various crystal growth 

modeling techniques is provided. Also, the developments in the modeling and control of 

Distributed Parameter Systems (DPS) are summarized. In Chapter III, the approach to 

solving the interface-shape control problem is presented. The finite element based state- 

space modeling of a general heat conduction PDE with arbitrary boundary conditions is 

presented in Chapter IV. Necessary and sufficient conditions for setting up an achievable 

distribution inside the continuum are derived in Chapter V. The FE- formulation for the
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5

phase change problem is presented in Chapter VI. Results associated with the control of 

interface shape using the FE model is presented in Chapter VII. A summary of this 

dissertation is provided in Chapter VIII.
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CHAPTER II 

BACKGROUND STUDY

Crystals can be grown by subjecting the pure molten compound encapsulated 

inside an ampoule to a temperature profile which includes its solidification temperature. 

Continuous solidification of the melt can be achieved by one of the two techniques: In the 

first approach, a Stationary Temperature Gradient (STG) is established inside the furnace 

and the ampoule is translated axially at a constant speed across the gradient. In the second 

method known as Electro Dynamic Gradient (EDG) control [2], the ampoule is held 

stationary and the temperature gradient is translated along the vertical axis o f the furnace. 

In either case, the furnace is used to establish the temperature gradient around the 

ampoule. In the next section, various furnace construction techniques are reviewed.

2.1 Furnace Construction Techniques

The original Bridgman furnace developed in 1925 by Bridgman to directionally 

solidify crystal is shown in Figure 2.1. This furnace has only one heating zone and is 

heated to a temperature higher than the material's melting point. A wire and a translation 

mechanism is used to support and translate the ampoule from the hot zone to room 

temperature. The achievable temperature gradient of this furnace is limited and can be 

varied by changing the temperature of the heating zone.

The Stockbarger furnace developed in 1936 improved the capabilities o f the 

Bridgman furnace by introducing a controllable cold zone. The crucible is supported by a 

pedestal and lowered out o f the bottom of the furnace. The temperature gradient is a

6
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function of the temperature difference between the hot and cold zones and the heat 

transfer out of the bottom of the pedestal. Under this configuration, the furnace can 

maintain a steeper temperature gradient than the original Bridgman furnace and therefore 

gives an improved crystal growth rate.

In the modified Bridgman-Stockbarger furnace, a section o f insulating material is 

placed between the hot and cold zones of the Stockbarger furnace to increase the 

controllability o f the temperature gradient during the crystal growth. The temperature 

gradient inside the furnace is determined by the length of the insulation and the 

temperature difference between the hot and cold zones.

One of the latest furnace designs known as the Mellen EDG furnace emulates the 

growth characteristics o f the Bridgman-Stockbarger furnace with many small heating 

zones. Each heating zone contains four radial heaters in order to control both the radial 

and longitudinal temperature profile.

Currently, there is a trend towards using multi-zone furnaces. Multi-zone furnaces 

allow for a variety o f temperature profiles inside the furnace. An increased number of 

zones provides better control o f the temperature profiles. Multi-zone furnaces can be 

constructed to operate as STG or EDG. In the case o f EDG, more zones are needed to 

translate the temperature profile in a smooth fashion.

The furnace provides the hardware to establish the temperature gradient. The 

following Sections review furnace temperature control techniques.

2.2 Furnace Temperature Control Techniques

The initial Bridgman, Stockbarger furnaces have been controlled by open loop 

gain controller. The Bridgman-Stockbarger furnace has been controlled by open loop 

proportional gain and feedback Proportional Integral Derivative (PID) controllers. In the 

case of the Mellen EDG furnace, each zone has been independently controlled by a PID
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controller with temperature feedback. In all these cases, control parameters have been 

found either by trial and error or by some kind of ad-hoc techniques and then fine tuned to 

improve performance of the controller.

The open loop system may experience an unrecoverable error, and the PID 

controller may produce sub-optimal transients. The sub-optimal transients may include 

undesirable temperature fluctuations or prolonged reference errors. To overcome this, 

self-tuning controllers using Single Input Single Output (SISO) and Multi Input Multi 

Output (MIMO) input-output models have been used to control the furnace [3], [4], [5], 

More recently, low-order output-feedback controllers have been designed using a state- 

space model o f the furnace through the projective control approach [6], [7].

The reference zone-temperature must be selected in such a way that the solidified 

crystals have certain desirable properties, such as low thermal stresses, and few crystalline 

imperfections. The shape o f the solid-liquid interface is related to the crystal properties. 

Chang and Wilcox [8] showed that a planar solid-liquid interface minimizes the residual 

thermal stresses and crystalline imperfections. Singh et.al [9] have shown that the shape 

of the interface is determined by the magnitude of the imposed temperature gradient and 

the translational velocity of the ampoule. Hence, the reference zone-temperature must be 

selected to produce the desired interface shape.

To accomplish this, Taghavi and Duval, [10] solved the inverse heat transfer 

problem for a simplified furnace analytically to determine a furnace temperature profile 

that would result in a flat interface. Dantzig et. al [1] used a FE model o f the furnace to 

find the necessary furnace temperature profile for a flat interface. The necessary furnace 

zone temperatures in their case are found as a solution to an optimization problem. These 

two methods can be used to determine the necessary temperature profile off-line.

However, owing to inevitable modeling errors, this solution may not produce the desirable
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interface shape. The control philosophy to overcome such problems is to use on-line 

measurements for feedback. In this work, a controller is designed that makes use of 

measurements to determine the necessary temperature gradient as in Figure 2.2. The 

proposed method requires a model of the crystal growth process. This modeling of the 

process is considered in the following section.

2.3 Modeling of Crystal Growth

The interface shape during ciystal growth is determined by conduction, convection 

and radiation heat transfers modes. Depending on the materials, one mode of heat transfer 

is significantly more dominant than others. For example, in the case of the electronic and 

acousto-optic materials, under certain conditions, heat conduction is the dominant mode 

[42]. The main idea in this dissertation is to solve the inverse problem to establish a 

desired interface shape. This is a difficult problem, accounting for all dynamics will make 

it almost impossible to solve with the available resources. Therefore, as a first cut, we 

consider heat-conduction as the primary mode o f heat-transfer and ignore all other 

phenomena.

The dynamics for the crystal interface shape inside an ampoule is assumed to be 

primarily governed by the conduction equation

riT
pc—  = V - (k V T )
^  dt V (2.1)

where p is the density, c is the heat capacity, k  is the thermal conductivity o f the material 

and T  is the temperature. In any crystal growth problem, the material is undergoing a 

phase change. The material properties are usually different for the solid and the liquid 

region. In addition when solidification occurs, energy due to latent heat of fusion is 

released. This introduces an additional energy equation for the interface region. The 

mathematical model for the heat conduction problem with phase change, also known as 

the Stefan's problem, includes two heat conduction equations; one each for solid and liquid
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regions and a solid/liquid interface condition. The model is described by the following set 

of equations [11]

p a — =v(i,vr)
r)TPA -̂=v-(t,vr) Solid region,

Liquid region,

At the Interface,
(2.2)

where the subscript 7  corresponds to properties of the material in the liquid region and

subscript 's' corresponds to material properties in the solid region, n is in the unit normal 

into the liquid region, vn is the velocity of the interface along the unit normal, and L  is the 

latent heat o f solidification. There are additional boundary conditions that depend on the 

geometry of the ampoule, and the type of furnace. These boundary conditions usually 

make the problem more complicated.

The interface shape during crystal growth is determined by conduction, 

convection and radiation heat transfers modes. Depending on the materials, one mode of 

heat transfer is significantly more dominant than others. For example, in the case of the 

electronic and photonic materials, heat conduction is the dominant mode due to high 

magnitude of thermal conductivity.

Other phenomena such as convection and radiation affect the crystal growth 

dynamics. Inside the liquid region, the fluid move around due to convection affecting the 

temperature distribution. Simulation and experimental studies on the effect of convection 

over the interface shape can be found in [12], [13], In [12], it is shown that convection 

has significant effect on the interface shape for horizontal furnaces. However, for semi­

conductor materials inside a vertical multi-zone furnace the effect of convection on the 

interface shape is not significant due to the magnitude of thermal conductivity coefficients.
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This fact coupled with the idea of keeping the problem simple, it is assumed that only 

conduction heat-transfer affects the interface shape. All other effects are neglected.

Phase change occurs in different forms depending on the type o f material involved 

[14]. In pure materials, the phase change region has distinct solid and liquid regions 

separated by a smooth and continuous interface. For metal alloys, the interface is mushy, 

i.e., the interface has a complex shape and is not necessarily smooth and continuous. In 

materials like wax or polymers, the solid and liquid phases are fully dispersed throughout 

the region with no distinct interface. In this dissertation, as we are dealing with pure 

materials, it is assumed that there is a smooth and continuous interface with a distinct solid 

and liquid phases.

2.4 Definition of the Forward and Inverse Problems

It is imperative to find the temperature distribution or the interface location for the 

given boundary conditions and initial conditions as illustrated in Figure 2.3. Within this 

dissertation, this is referred to as the "forward" problem. In a similar fashion, the "inverse 

problem" corresponds to finding the necessary BC for a desired temperature distribution 

or interface location, and is given in Figure 2.4.

2.5 Solutions to Forward Problem

A number of research articles have appeared in the last few years to solve the 

forward problem. The main difficulty in solving the forward problem is the movement o f 

the interface surface. The rate at which this movement occurs depends on the heat 

removal rate at the interface surface region. The heat removal rate is dependent on the 

material's properties, which are usually temperature dependent or at least depend on the 

state1 of the material. This phenomenon introduces non-linearities in the problem.

1 solid or liquid
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Further, the rate o f travel of the interface is not known a priori. This rate is needed to 

make a heat balance across the interface to solve for the temperature distribution. Hence, 

an iterative scheme is needed to solve the forward problem. This introduces yet another 

non-linearity.

2.5.1 Analytical and Semi-Analvtical Methods

Many analytical solutions are available in the literature to solve the 1-D Stefan 

problem with specific boundary conditions [15], [16], Sukanek [17], [18] found an 

approximate quasi steady-state solution to the 1-D Stefan problem in a Bridgman- 

Stockbarger furnace using the perturbation technique. A few results are available for the 

2-D case with simplified geometries and BC's [19], [20], Even for the simplified 

geometries, most o f the analytical results provide only the steady-state solution. It is veiy 

difficult to obtain analytical solutions for the transient problem even for simple geometries 

and BC's. In these situations, the solution is found using numerical techniques.

2.5.2 Numerical Methods

The numerical techniques depending on the choice of dependent variables can be 

broadly classified into two categories: frontal tracking methods, and fixed grid techniques 

[21]-

2.5.2.1 Frontal Tracking Methods

In the frontal tracking method [11], valid for phase change problems with a distinct 

interface, the temperature is the sole dependent variable. Conduction energy equations are 

written for the solid and liquid regions. The boundaries o f the solid and the liquid region 

are determined by the interface location, which is unknown. To overcome this problem, 

the interface position is assumed and the conduction equation is solved to determine the 

temperature distribution using either Finite Element Method (FEM) [22] or Finite 

Difference Method (FDM) [23]. Using the temperature information, the assumed
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interface position is adjusted. This process is repeated until convergence occurs. The 

general procedure can be seen in Figure 2.5. The FEM or the FDM essentially discretizes 

the solid and liquid regions. It is very difficult to accurately describe the shape of the

the interface is more finely discretized than the other regions.

2.5.2.2 Fixed Grid Technique

Here, the enthalpy is used as the dependent variable along with the temperature. 

The released latent heat during solidification is accounted for in the governing energy 

equation through the definition of total enthalpy. This way the interface shape and 

location are not used for computing the temperature distribution, rather, the interface 

shape and location are found using the computed temperature distribution.

A comprehensive survey of the fixed grid techniques is given by Voller and co­

workers [14], The total enthalpy is defined as

where H  is the total enthalpy dependent on the temperature T, Trej- is the arbitrary 

reference temperature and g(T) for problems with distinct interface is the Heaviside step 

function given by

this procedure to solve the mushy phase change problem.

2.5.2.2.1 Basic Enthalpy Method

In the basic enthalpy formulation, the governing equation for the phase change problem is 

given by

interface with this procedure. In order to obtain more accurate results, the region around

T

H (T)  = jp c d d  + pg(T)L
(2.3)

(2.4)

where Tm is the melting point of the material. A modification in g(T) is necessary to use
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The properties p, c at any spatial location are dependent on the state2 of the material and 

are given by

P = V - g ( T ) ) p s + g(T)p ,
c = ( 1 -  g(T))cs + g(T)c , (2 6)

The enthalpy formulation given by (2.5) is equivalent to the conduction energy 

formulation given by (2.2). The proof to the general 3-D case can be found in [21].

Standard FEM or FDM discretization can be used to solve for enthalpy in (2.5) 

[24], [25], In this method, the enthalpy is the primary variable and the temperature is 

computed using the enthalpy definition in (2.3) directly or an approximated version of

(2.3) as in [26],

2.5.2.2.2 Apparent Heat Capacity Methods

In apparent heat capacity methods [27], the temperature is the primary variable. 

According to (2.5), the enthalpy is a function of temperature only and hence the rate of 

change of enthalpy is given by 

dH _  dH dT
dt dT dt (2 7)

Further from (2.3),

° A{T) = = pc + p L 8 (T -  Tm)
dT ’ (2.S)

where c4 is the Apparent Heat Capacity (AHC), 8(.) is the delta-dirac function. Using 

(2.7) and (2.8), the basic enthalpy formulation Equation (2.5) is transformed to

2solid or liquid
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Note that the above governing equation is similar to the conduction energy equation in 

(2.1). The AHC is temperature dependent; hence, the above equation is non-linear. 

Further, the AHC function defined in (2.8) has a singularity at T  = Tm.

Two schemes have been proposed to approximate the singularity, namely, the 

linear approximation [27] and the homographic approximation [28]. These methods are 

described in Chapter VI. With these approximations, the well-known FEM or FDM 

discretization techniques can be used to solve for the temperature distribution. The 

resulting temperature distribution is a good approximation of reality for small time steps.

If a large time step is used, the nodal points may solidify3 without releasing the latent heat, 

as AHC does not take the peak value. This problem is termed as 'jumping of the latent 

heat peak' [29]. To overcome this, many approximations to the AHC have been proposed. 

A classification of these approximations are provided in [14]. In general, two classes of 

approximations are available, namely the ones based on spatial averaging [30 ] and the 

ones based on temporal averaging [31], These approximation techniques can be used in 

connection with both explicit and implicit integration schemes and provide a reasonable 

solution when the time step is not too large. Several other modifications to the above 

approximations are also found in the literature [26], [32], [29],

In summary, the apparent heat capacity method is one of the most appealing 

techniques because o f its simplicity. This method works well for small integration steps 

and can be used to solve the multi-dimension transient problem. In this dissertation, a 

simplified version o f this technique is used for simulating the crystal growth process.

3go past the melting temperature
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2.5.2.2.3 Source Methods

In this technique [33], the latent heat evolution is accounted for in the definition of 

a source term. The total enthalpy is split into an effective specific heat component and a 

latent heat component as

H (T )=  M J )  + pg(T)L
specific heat La,enlheal
component component ,  (2 10)

where

T

h(T)  = J pcd6
T *  (2 .11)

Defining the specific heat 0s as

c* = pc, (2.12)

the rate o f change o f the enthalpy is given by

°W = dH_dT= s dT + dg
dt dT dt dt ^  dt ' (2.13)

Substituting the above relation into the basic enthalpy governing Equation (2.5) yields

cs( T ) ^ -  = V - [ k V T )  + S
dt 1 '  • (2.14)

with S  being the non-linear source term given by

S = -p L  —
K dt - (2.15)

The problem with this method is that the location of the interface is unknown and hence it

is difficult to compute the source term S. To overcome this, Voller [33] used iterative

schemes in connection with FDM discretization to solve for the temperature distribution. 

However, the iterative scheme does not have the same stabilizing mechanism found in the
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apparent heat capacity method [14], Voller [34] linearized the nonlinear source term to 

obtain improved results.

2.6 Inverse Problem

The inverse problem is generally more difficult to solve than the forward problem. 

Some results regarding inverse heat conduction problems can be found in [35], Even for 

simple heat conduction problems, the inverse problems are ill-conditioned. Taghavi and 

Duval, [10] analytically solved the inverse heat transfer problem for a simplified furnace to 

determine a furnace temperature profile that would result in a flat interface. Dantzig et. al 

[1] used an enthalpy-based FE model of the furnace to find the necessary temperature 

profile for a flat interface. The necessary furnace zone temperatures in their case are 

found as a solution to an optimization problem. These two methods can be used to 

determine the necessary temperature profile off-line. However, due to inevitable modeling 

errors, this solution will not produce the desirable interface shape. Some of the modeling 

errors arise from the inexact knowledge of the material properties, from heat transfer 

coefficients, and boundary conditions that only approximate the reality.

In the control's area, the shortcomings associated with the use of the inverse 

solution is very well understood. The main shortcoming is that the inverse solution does 

not achieve the desirable temperature distribution and there is no standard technique to 

correct for such errors. A control's approach to overcome such a difficulty is to use on­

line measurements to compensate for modeling errors. For the crystal growth problem, 

the on-line measurements are used to determine the necessary temperature gradient to 

produce the desired interface shape. Clearly, to implement such an idea, it is necessary to 

have sensors for the sake of measurements and actuators to obtain the necessary 

temperature gradient around the ampoule. A procedure to determine the necessary
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temperature gradient on-line by making use of all available measurements is proposed in 

this work.

A significant amount of research has been reported in the control's areas to solve 

problems similar to crystal growth. This area is known as "Distributed Parameter Systems 

(DPS)." A survey of the developments in the modeling and control of DPS is provided in 

the next Section.

2.7 Distributed Parameter System

A DPS is a system in which the variables of interest are a function o f both space 

and time. This definition classifies almost all physical systems to be intrinsically 

distributed. The mathematical model o f a DPS is derived from fundamental laws such as 

the conservation o f mass, energy and momentum. In general, the model is usually 

represented by Partial Differential Equations (PDEs). Alternative forms of representation 

includes Integral Equations and Integro-Differential Equations. Examples o f DPSs include 

the ciystal growth furnace, casting processes, heat exchangers, transmission lines, space 

structures, distillation processes, nuclear and chemical reactors.

The modeling and control of DPSs have been a topic of research for several years. 

Wang [36] has defined several notions regarding the modeling and control o f distributed 

systems as early as 1964. Balas [37] has summarized the trends in the control of a specific 

DPS, namely, large space structures. A good overview of the approximation schemes and 

the observability concepts as related to the DPSs can be found in [38]-[39],

In classical control, the system to be controlled is represented in the form of 

Ordinary Differential Equations (ODE). The model of the system is usually described in 

either the Laplace domain or the state-space domain. The DPSs, on the other hand, are 

characterized by PDEs, which conceptually can be thought of as an infinite system of 

ODEs. For this reason, DPSs are also known as infinite dimensional systems. The DPS
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theory can be broadly divided into two main groups: modeling and control. The modeling 

aspect includes obtaining a model to perform controller design or perform system 

simulation. The control aspect of DPS includes issues such as stability, controllability, 

observability, stabilizability, detectability, and control design techniques.

2.7.1 Modeling o f DPS

There are two basic approaches to model DPS: the exact or the analytical 

approach, and the approximate approach.

2.7.1.1 Exact Approach

In the exact approach, the transfer function between the input and output is used 

to model the DPS. The transfer function is obtained by finding the Green's function as in 

[40]. However, even for a simple problem, the resulting transfer functions are 

complicated and are never rational like those of lumped systems. These transfer functions 

have an infinite number o f poles. For systems with complicated boundary conditions, such 

as the crystal growth furnaces, it is not feasible to find the transfer functions between the 

inputs and outputs.

2.1.1.2 Approximate Approach

Most of the practical approaches approximate the distributed system, which is 

theoretically an infinite dimensional system, by a set of finite dimensional systems. FDM is 

a spatial lumping technique which transforms the original distributed system to a set of 

difference equations. Many applications of FDM can be found in [41], [70], Another 

method is to obtain a finite rational transfer function by performing an infinite product 

expansion of the transfer function and truncating the higher order terms [43], In the 

modal approximation technique, the system is approximated by a few dominant 

eigenfunctions [44], [45]. The number of modes can be fixed by comparing the norms of 

the approximated and the original systems [46], In the method of weighted residuals, the
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solution is approximated by a set o f basis functions [47] and the resulting spatially 

weighted residual is minimized. This transforms the distributed system into a set of Ode's. 

The FEM is a special type of weighted residual technique in which the basis and weight 

functions are non-zero on a small part of the spatial domain [41], [17], The FEM has been 

used to determine optimal controllers as [85], [86]].

Almost all practical controller design methodologies for distributed systems 

approximate the system by one of the many techniques described above. The most 

popular technique is the FDM. The main attraction behind FDM is that the approximated 

system is in the state-space form and therefore, many of the multi-variable control 

techniques [49] may be readily used for this purpose. However, the FDM provides a 

solution at the nodal points only and it is difficult to use FDM on complicated geometries.

On the other hand, FEM provides a solution everywhere in the domain and can be 

used for complicated geometries with very little extra effort. There have been some 

applications o f FEM in the space-structures controller design [50], The major problem 

with FEM is that a state-space model is not readily available, especially for systems that 

are controlled from the boundary. The boundary conditions are embedded in the force 

term and there is no direct way to find the boundary conditions that would yield the 

desirable conditions inside the continuum. In this dissertation, a new approach is proposed 

to overcome this limitation and modify the FE formulation to obtain a lumped state-space 

model of the DPS. This formulation is presented in Chapter IV.

2.7.2 Control Issues

2.7.2.1 Stability

The stability definition for Finite Dimensional Continuous Linear Time Invariant 

(FDCLTI) systems is given by any one of the following statements [51], [52] :
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(a) A continuous linear system is stable if its output remains bounded for every bounded 

input (BIBO stable).

\\h(x)\dx  < oo
(b) A FDCLTI system is stable if 0 , where h(x) is the impulse response

of the system.

(c) A FDCLTI system is stable if all the poles of the transfer function lie in the open left 

half o f the s-plane.

(d) A FDCLTI system is stable if all the eigenvalues of the A matrix have negative real 

parts, where A is the system matrix in the state-space representation of the system given 

by

x  = Ax  + Bu

y = C x- (2 , i6)

(e) A FDCLTI system is stable if there exist two positive constants M  and a  such that 

le^'l < Me~a , for all 1 ^  0 where ||| is any norm of the matrix (Exponential stability).

All o f the five definitions stated above are equivalent for the FDCLTI systems. Several 

stability tests have been developed for finite dimensional systems. Some of them are the 

Nyquist method, the Routh technique, and the Lyapunov technique [53],

Many o f the results valid for finite dimensional systems have been extended to the 

linear time invariant DPS or to infinite dimensional linear system. A necessary and 

sufficient condition for BIBO stability o f DPS is given by Vidyasagar [54], The condition 

is exactly the same as (b). Condition (c), i.e., a stable system has all its poles in the left 

half o f the s-plane, readily extends to linear DPS. This has been stated as a fact in [54], In 

[55], the infinite dimensional state-space system is defined and is given by

x  = Ax  + Bu

y = Cx, (2.i7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

where ^  B.U -» X, C:X  -» Y are jnfinjte dimensional linear operators withX, U 

and y  being real Banach spaces. Further, the operator A is assumed to be a generator of a 

continuous semigroup denoted by {e }(>0. This assumption is an extension of the finite­

dimensional state-transition matrix to the infinite-dimensional case, i.e., the infinite­

dimensional analog of the matrix exponential. Exponential stability in this domain is 

defined exactly the same way as in (e), i.e.,. the system is stable if there exist positive 

constants M  and a  such that \\eAl || ^  Me~m for all t > 0, where ll'll is an appropriate norm

defined on the Banach space X.

Many stability tests, valid for finite dimensional system have been extended to 

DPS. Desoer and Wang [56], and Chait and Racliffe [57] have extended the Nyquist 

stability criterion to DPS. Pourki and Shoureshi [58], [59] have applied the Lyapunov 

technique to analyze the stability of a class of DPS. Though many tests have been 

proposed similar to those for finite dimensional systems, the task of determining the 

stability o f a general linear DPS is very difficult. All the techniques require either the 

state-space representation or the transfer function of the DPS. These are not, unlike the 

lumped case, generally available. Usually only approximate (lumped) models o f any 

general DPS can be obtained. However, a stability analysis on the approximate model will 

not yield accurate information about the stability of the original system.

2.7 2.2 Controllability

Insights on controllability of DPS can be obtained by considering the definition for 

finite-dimensional systems. For finite dimensional continuous linear system, controllability 

is defined as follows: "A system is said to be controllable if there exist a finite control 

sequence u(t), t > 0 that transforms the system from any initial state x(0) to any other 

state X f  = x(T) in a finite time T> 0." To verify controllability, one of the following tests 

can be used
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(a) A FDCLTI system is controllable (also observable) if there are no pole-zero 

cancellations in the transfer function and this is valid for SISO system only.

(b) A FDCLTI system is controllable if the matrix Qc defined as

« • = [ *  A B  A ''B  -  A ' " B \  (2 .18)

has full row rank. Here A and B  are state-space matrices as defined in (2.16), and n is the 

number o f states.

(c) A FDCLTI system is controllable if &56 0, where v is any eigenvector o f A T.

(d) A FDCLTI system is controllable if the controllability Grammian P  defined by

P -  ~\eA‘BBTeAT‘ dt
° (2.19)

is positive definite.

All four tests described above are equivalent. Note the integral given by (2.19) exists only 

if all the eigen values of system matrix A is in the open half plane. Therefore the test (d) is 

not always equivalent to others.

The concept of controllability is much more complicated for DPS. In fact, for 

DPS there are two types o f controllability, namely, exact controllability, and approximate 

controllability [55], "A system is said to be exactly controllable if there exists a finite 

control sequence u(t), t > 0 that transforms the system from any initial state x(0) to any 

other state x t = x ( T )  in a finite time T>  0, where x()  resides in an infinite dimensional 

space (Hilbert space)." The exact equality is very difficult to achieve in practice and 

therefore most distributed systems are not exactly controllable. An approximate 

controllability concept is defined as follows: "A system is said to be approximately 

controllable if there exists a finite control sequence u(t), t > 0 that transforms the system 

from any initial state x(0) to any other state x(T) in a finite time T > 0 such that 

~ x t \  -  e for all e > 0, where xT is any arbitrary state."
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Unlike the finite-dimensional case, there are no criteria that can be used to check 

the controllability of DPS. If the transfer function of the DPS is available, then it is 

possible to check controllability by finding out if there are any pole-zero cancellations 

(SISO). This is not practical as there are infinitely many poles and probably infinitely 

many zeros. Delfour and Mitter [60] employed functional analysis to derive conditions on 

the state-input operator, S' u e U  —> x e X ^  w}jere jj js the input space andX is the infinite­

dimensional state-space (Hilbert space), to check for controllability. One of the main 

results is that "the image of the operator S  must be dense in the state-space X  for the 

system to be controllable." More recently, Lions [61] developed conditions for exact 

controllability of a wave equation with both Dirichlet and Neuman boundary conditions.

In many control system application, the location of the actuators is to be selected 

by the designers. The concept o f "strategic actuators" [62] is developed for this purpose. 

Actuators residing at the given locations are said to be "strategic actuators" if the resulting 

control system is weakly controllable. Some of the controllability conditions can be used 

to find the optimal actuator locations.

2.1.23 Stabilizabilitv

Consider the question "if the given system is uncontrollable, is it possible to design 

a controller?" This question can be answered using the concept o f stabilizability. As in 

the previous sections, let us first consider the finite-dimensional case. Given a system, the 

state-space X  can be divided into two subspaces; namely the controllable subspace and the 

uncontrollable subspace. The uncontrollable subspace contains all the modes that are not 

controllable. "A system is stabilizable if the entire uncontrollable space is stable." Hence 

if a system is stabilizable, it is possible to design a controller to meet reasonable
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specifications4. The stabilizability o f a finite-dimensional system can be checked by one of 

the three equivalent methods given below:

(a) A system is stabilizable if vTB & 0 5where v is any eigenvector of Ap  corresponding 

to a non-negative eigenvalue.

(b) A system is stabilizable if the controllability Grammian P  given by (2.19) is positive 

definite.

(c) A system is stabilizable, if there exists a gain matrix K  such that the matrix (A-BK) 

is Hurwitz, i.e, has all eigenvalues with negative real parts.

The stabilizability definition for DPS can be defined in the same way as in the 

finite-dimensional case. However, for a particular DPS, the infinite-dimensional state- 

space X  may not be decomposable into controllable and uncontrollable subsystems. Thus, 

to overcome this technical difficulty, the formal definition of the stabilizability o f DPS is 

given as follows: "An infinite dimensional state-space system (A, B) is said to be 

stabilizable if there exists a bounded linear operator K  X  -» U such that A-BK  generates a
\ e {A-BK),  1

continuous stable semi-group denoted by >■ J'*>."[63]. Rebarber and Knowles [64]

have shown that if a system is stabilizable then there are only finitely many unstable modes 

(right half plane eigenvalues). A similar result for joint stabilizability/detectability (defined 

later) can be found in [63], Thus stabilizability of an infinite-dimensional system is 

essentially finite-dimensional.

2.7.2 4 Observability

Observability is the dual concept of controllability. For continuous time finite­

dimensional systems, observability is defined as follows: "A system is said to be observable

4The choice of the design specifications is less when compared to a controllable system. This can be seen 

in the section on trackability in Chapter V.
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if any initial state x(0) can be determined uniquely through the knowledge ofy(t), u(t), 0<t 

<T, where T is finite." Just as controllability, the observability of the state-space system 

can be verified by one of the following equivalent tests:

(a) System is observable if matrix defined as

t- , _ .  r  . .

o  = CT (CA)r (CA2f  ••• (CAn~])T
(2 .20)

has full column rank. Here ,4, and C are state-space matrices as defined in (2.16), and n is 

the number of states.

(b) A FDCLTI system is observable if Cv 05 where v is any eigenvector o f A.

(c) Assuming stability, a FDCLTI system is observable if the observability Grammian 

O defined by

oa
Q = J eAT'CrCeAt dt

0 (2 .21)

is positive definite.

Observability concept of DPS is older than controllability due to developments in 

the area o f identification of DPS. Two types o f observability that are important from the 

controls view point are defined in this section; namely, exact and approximate 

observability. There are other types of observability such as G-K observability, N-node 

observability [65] which shall not be discussed here. "A DPS is said to be strictly 

observable if any initial state x  can be uniquely determined from the knowledge of u and 

the measurementsy". In [62] this is defined mathematically as follows: The DPS is 

exactly (continuously) observable, if there exists a y >  0 such that

Ce" *(°)IL r  ̂I ' M  (2.22)
\ e Ax\Note 1 J is the continuous semigroup generated by A. The exact observability definition 

is satisfied by very few DPS and many times, it is not necessary to have exact observability
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to design and implement controllers. Hence a weaker or approximate observability is 

defined as follows: "The DPS is approximately observable if

H ^ W l L r  = 0=> *<°> = 0 " (2.23)

Just like controllability, there are very few criteria that may be used to check 

observability o f a general DPS. If the transfer function o f DPS has no pole-zero 

cancellation the DPS is observable and controllable. However, as stated before, this is not 

practical because there are infinitely many pole and possibly infinitely many zeros. 

Functional analysis has been used in [60] to derive some general conditions for 

observability.

2.1.2.5 Detectability

There are many systems that may not be observable. To design controllers to meet 

reasonable specifications, the concept of detectability is used. The state-space X  can be 

partitioned into an observable subspace and an unobservable subspace. Detectability of a 

finite-dimensional linear system or linear DPS is defined as follows: " A system is 

detectable if the entire unobservable subspace is stable". Thus if a particular mode is 

unobservable, we know that mode does not cause instability. The concept o f detectability 

is dual to that o f stabilizability. For continuous time finite-dimensional systems the 

detectability can be verified by one of the following conditions:

(a) A FDCLTI system is detectable if Cv *  0 5 where v is any eigenvector o f A

corresponding to a non-negative eigenvalue.

(b) A FDCLTI system is detectable if the observability Grammian O given by (2.21) is

positive definite.

(c) A FDCLTI system is detectable if there exist a gain matrix L  such that the matrix

(A-LC) is Hurwitz.
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For DPS, a more practical definition of detectability is given in [63] as "An infinite 

dimensional state-space system (A, C) is said to be detectable if there exists a bounded

linear operator L \Y  X  such that A-LCgenerates a continuous stable semi-group
\ e {A- LC),\

denoted by *■ i «>o." Using the duality concept, it is possible to show that 

detectability of an infinite-dimensional system is essentially finite-dimensional.

2.12.6 Control Design Techniques

In this section, a brief review of different control design techniques is made. The 

coprime factorization technique [54], and H “ control technique [66], [67] are two o f 

several approaches that utilize the transfer function of the system to design controllers.

The transfer function is obtained by analytically solving the PDE including the BC's. A 

robust multivariable PID controller using an infinite-dimensional state-space model is 

designed in [68], Many control design problems have been formulated as a regulator 

problem such that the control action minimizes a quadratic performance index [69]. There 

are very few practical control design applications that make use o f the infinite dimensional 

state-space or the transfer functions. This is because of the difficulty o f obtaining such 

models for general DPS.

Most practical control of DPS is performed using a lumped model of the DPS.

Some of them are: state-space design techniques using FDM [70], state-space design 

technique using reduced-order FE based models [50], adaptive control using FE based 

model [71], and modal control [72], The designed controller may have satisfactory 

performance with respect to the lumped model; however, in some situations, this 

controller may not stabilize the original DPS. This is known as the spill-over effect [72]. 

This usually occurs when there are modes close to the j (0  axis that are not included in the 

lumped models. One way to overcome this problem is to include all such modes in the 

lumped model and then design the controller. This may not be always feasible as in the
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case of flexible systems, where there are infinitely many modes close to the jco axis. 

Another method is to design a robust controller that stabilizes all the nearby systems (in 

some norm sense) as in [73]. The heat conduction equation is inherently very stable and 

so the system dealt with in this dissertation most probably will not have any spill-over 

problems.

2.7.3 On Lumped Model Representation ofDPS

Many times, the applied control is also distributed. In this situation, there are two 

options. In the first option, a lumped model of the system is used to design a lumped 

controller which in turn is used to construct the distributed controller. The second option 

is to include the controller into the distributed model and lumping is done to solve for the 

controller. The authors in [74] argue that the second option would yield better controllers 

as the distributed nature of the system is retained in the control design equations. 

Unfortunately, solving the distributed control design equation is not easy. Therefore, most 

practical control implementation utilize a lumped model ofDPS. This raises the following 

question: "Does such an approximation preserve the stability, controllability, and 

observability o f the original DPS?" The answer to this question depends on the type of 

the approximating method. As stated before, if a system is jointly stabilizable/detectable 

then the number of unstable modes is finite. Hence, the approximated model must at the 

least contain all o f the unstable modes. This is essential to design a stabilizing controller.

For some approximating methods, it is possible to obtain an error bound. Let the 

input-output mapping of the DPS be given by H :u  eU  —> y e Y  and the approximate 

input output map be given by Hn. The infinity norm error bound denoted by \H  ~ 

can be found for certain approximation schemes (modal approximations) given in [75],

[76], This knowledge gives us an estimate of the infinity norm of the uncertain/unmodeled
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portion of the system and the controller designed through robust control design technique 

can guarantee some performance on the infinite-dimensional closed-loop system.

For spatial lumping techniques such as FDM or FEM, there are some bounds on 

the error o f approximation for the steady-state linear problems [77, pg. 268], However, 

there are no such error bounds for the transient problem with general BC. It is known that 

increasing the number of nodes will increase accuracy. Also, for simple problems, the 

nodal solution of the unknown variables is exact. Thus, if the distribution is not wild, then 

the spatially lumped model based solution is a good representation of the exact solution. 

With this in mind, it is reasonable to expect approximate preservation of stability, 

controllability and observability.

2.8 Summary

In this chapter, it is concluded that conduction is the main mode of heat transfer 

that determines the shape of the interface. A brief survey of different methods to solve the 

phase change problem is contained in this chapter. The most attractive method for 

controller design is the apparent heat capacity method, in which the moving boundary 

value problem is modified into a non-linear fixed domain problem. Developments in the 

area ofDPS is used to gain insight into the inverse problem. Several control issues, such 

as stability, controllability, observability, stabilizability, and detectability pertaining to DPS 

are discussed. The next chapter proposes a method to solve the inverse problem.
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CHAPTER III 

PROPOSED METHOD

The main objective of this dissertation is to control the shape of the interface by 

varying the furnace zone temperatures. This is achieved by first constructing a model for 

the crystal-growth process and then using it to design a controller. The modeling o f the 

crystal growth process dynamics is discussed in the following section.

3.1 Heat Transfer Modeling

The dynamics o f interface shape during crystal growth process inside an ampoule 

is assumed to be primarily governed by the conduction heat-transfer. The mathematical 

model for the heat conduction problem with phase change includes two heat conduction 

equations, one for the solid region and another for the liquid region and a solid-liquid 

interface condition accounting for the release of latent heat as given in (2.2). This 

problem is a moving boundary value problem as the location of the interface is changing 

with time. Enthalpy formulation can be used to transform the moving boundary value type 

problem to a non-linear heat conduction problem without change of phase through the 

definition of total enthalpy.

3.1.1 Modeling of a General Heat Conduction Problem

The general heat conduction problem is described in terms of a PDE along with 

appropriate boundary conditions. In the inverse problem, it is required to determine the 

controllable BC5 that would set up a desired temperature distribution inside the region of

5The required BC are set up by a command to the heater temperature control system.
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interest. The FEM can be used to obtain a lumped model of the heat conduction problem 

including the BC's and is given by

M T + K T  = F, (3 .1)

where M, K, and F  are the mass, stiffness, and force matrices respectively and T  is a 

vector containing the temperature at certain key points (nodes). The above equation can 

be used to determine the solution to the forward problem. However, solving the inverse 

problem is difficult using Equation (3.1) as the relation on how the BC's affect the 

temperatures is embedded in the force matrix F.

In this dissertation, a state-space model of the heat conduction energy equation is 

obtained by lumping the partial differential equation using the FE approximation. In this 

approach, the three main BC's namely the insulation BC, the convection BC, and the 

Dirichlet BC are parameterized and the variable parameters are included in the input 

vector u j and all other uncontrollable parameters in 1*2 . The resulting state-space model is 

given by

T  = A T + 2?,w, + B2u2 p  2)

where A, Bu and B2 are matrices o f appropriate dimensions and 7* is the temperature at 

the nodes. Any temperature measurements can be described in terms o f the nodal 

temperature as

y  = C T + D ^ + D 2u2 p  3^

This formulation can be seen in Chapter IV.

3.1.2 Heat Conduction Problem with Phase Change

The AHC method can be used to obtain a PDE that models the phase change 

problem. This PDE has a form similar to that of the regular heat-conduction problem, 

with temperature dependent specific heat and heat conductivity coefficients. Hence, a
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similar procedure described in the previous section is used to obtain a state-space model of 

the system. However, the matrices A, Bx, and B2 are temperature dependent and thus 

make the state-space model non-linear.

3.2 Controller Design

3.2.1 Control of a Heat Conduction Problem

A controller is designed using the state-space model. The dynamics of the 

controlled system (closed-loop system) must have the following properties: stability, 

reasonable transient response, and tracking of a specified temperature distribution. State- 

feedback is the most general linear control law and is given as

ui = K sT , (3.4)

where Ks is the state-feedback gain matrix. With the above control-law, the transient 

response o f the lumped system can be shaped to satisfy reasonable design requirements. 

Setting up an arbitrary constant temperature distribution can be accomplished by adding a 

bias input u/, as

ui = K T +ub. (3.5)

The existence o f a bias input that will produce a desired temperature distribution depends 

on the actuator locations. A necessaiy and sufficient condition for the existence of such a 

bias input is derived in Chapter V.

To implement the control law in (3.5), it is necessaiy to know the states, i.e., the

nodal temperatures T. Only a few of the states6 are measured and therefore all other states

are reconstructed from these measurements. This is feasible if the system is observable.

The control law in (3.5) is modified as

6or linear combinations of states
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«, = K J  + Ubt

where T  is the estimated state, found by simulating the system 

T = A T  + B]ul + B 2u2 + L (y  -  C f  -  D{ux -  D2u2) (3.7)

(3.6)

Here L  is the observer gain matrix which is selected by the designer to shape the estimated 

state transient response.

Further, when the system is stabilizable and detectable but not observable or 

controllable, the temperature distribution that can be established inside the material is 

limited. It is possible that depending on the location of actuators, the desired temperature 

distribution cannot be established by any input. In this situation, the temperature 

distribution can be implemented only in a least-squares sense. In Chapter V, necessary 

and sufficient conditions are developed for the existence o f inputs so that a desired 

temperature distribution can be established in the steady-state.

3.2.2 Control of a Heat Conduction Problem with Phase Change

The main objective here is to control the shape o f the interface and grow the 

crystal at a desired rate. This objective is equivalent to setting up a desired temperature 

distribution inside the material and translating it at a desired rate. The state-space model 

of this system is similar to the general heat conduction problem except that the state-space 

matrices are temperature (state) dependent and therefore is non-linear. The task of 

designing a controller (linear or non-linear) for a general non-linear system is a very 

difficult proposition. A standard approach is to linearize the non-linear system and utilize 

the linear control design procedures. This would result in finding a linear controller. The 

linearization procedure is described in Chapter VII. The linearized model is used to a 

controller in the same way as in the previous section to establish the appropriate 

temperature distribution that corresponds to the desired interface shape.
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The translation of the interface is achieved by requesting a temperature distribution 

that moves at the desired translation rate. If the controller can keep up with this request 

and establish the temperature distribution at every instance, the desired translation rate is 

achieved. More details on this subject can be found in Section 7.3.2.

3.3 Summary

A method is proposed to control the shape of the interface, the dynamics o f which 

are governed by conduction heat transfer. A new technique is formulated to obtain a 

state-space model of a general linear heat-conduction equation controlled from the 

boundary using FEM. The same procedure is used to obtain a state-space model of the 

heat-conduction equation with phase change. An observer based state-feedback controller 

with an additional bias input is used to establish the desired temperature distribution inside 

the material and translate the distribution at the desired rate.

In the next chapter, the FE formulation of a general heat conduction problem with 

arbitrary BC’s is presented.
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CHAPTER IV

STATE-SPACE MODELING OF BOUNDARY CONTROLLED HEAT 

CONDUCTION EQUATION

One of the main ideas of this dissertation is the use of the FEM to develop a state- 

space model of the distributed system. In this chapter, the formulation is presented for an 

axi-symmetric linear heat conduction problem. This formulation can be generalized to a 

general 3-D problem, and to other DPSs. Later on in Chapter VI, we will extend this 

modeling approach in this chapter to diffusion dominated phase change problems.

4.1 Boundary Control o f Axi-Svmmetric Heat Conduction Equation: Problem Statement 

The temperature distribution inside a material due to conduction heat transfer is 

determined by the partial differential equation

,- 2  dTk V T  = pc —
& > (4.1)

where k  is the thermal conductivity, p is the density, Cp is the specific heat and T  is the 

temperature. The condition of axi-symmetry is assumed for this formulation to reduce the 

complexity of the problem. However, the formulation derived in this chapter can be 

generalized to problems that do not satisfy the axi-symmetry assumption. An example 

problem is illustrated in Figure 4.1. Three different boundary conditions are possible; 

namely the insulation, convection and Dirichlet boundary condition. These are given as

=  0Insulation —  
an r,

rfT
Convection k —  + h(T-T!)\ = 0 

on lr-
Dirichlet 7jr = TVi

(4.2)
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INSULATION

Z Z ^ t Y t V Z Z Z Z

T(r,z) CONVECTION

V\Y
' INSULATION

Figure 4.1 Illustration of a simple axi-symmetric heat conduction 
problem.
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where I”, denotes the either the insulation, or convection or the Dirichlet boundary surface, 

T'b denotes the boundary temperature in the convection boundary condition, and h denotes 

the convection coefficient. The control problem is to determine the boundary temperature 

T'b in the convection equation and/or the surface temperature r̂, in the Dirichlet BC so 

that an appropriate temperature can be established either at certain key points or at every 

point inside the material.

4.2 Finite Element Formulation

The heat conduction equation given by (4.1) in a cylindrical coordinate system 

with the axi-symmetry condition takes the following form

. { F T  1 dT ? T \ dT
= Pcp ^ t

P 91 , (4.3)

where (r,<p,z) are the cylindrical coordinates. Because of the assumption of axi-symmetry, 

the <j> term is not included in the above equation; it is sufficient to find the temperature for 

the surface <f> = 0 as shown in Figure 4.2. Along with this simplification, it is necessary to 

introduce an insulation BC on the axi-symmetric axis as given by

dT
dr

= 0
r= 0 (4.4)

The temperature profile T(r,z) can be found by solving the weighted residual equation

JJ w(r,z)
n

k c tT  1 dT c?T_ 
dr2 r d r *  dz2

dT
~ PC’ T

2nrdrdz -  0
(4.5)v \

where Q. is the domain of integration, and w is the weighting function satisfying certain 

smoothness conditions. The weighting functions belong to the Sobolev space [77] and are 

zero at Dirichlet BC locations (at which temperatures are fixed). A variational form of 

Equation (4.5) is given by
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(0,L) (a,L)

CONVECTION
BOUNDARY
CONDITION

(a,0)

Figure 4.2. Implementation of axi-symmetry condition.
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f f  dT a j  f ( , ( dT dw dT , , r ,  ( dT dT  ^ff«pc„ - r d r < U + ] \ k [ - - + - - j rdrdz = j ^ - n r + - n ,  Jmr ^

where T  is the bounding surface of the domain £1 nr and nz are the r and z  components of 

the unit outward normal vector to T. The first term in (4.6) corresponds to the mass term, 

while the second corresponds to the stiffness term and the term on the right hand side is 

due to the BC and makes up the force term. The variational form is a simpler equation to 

solve as the equation is first order in terms of the unknown temperature. The finite 

element procedure uses the variational form in (4.6) to solve for the temperature inside the 

continuum. Proofs to equivalence o f solutions of Equations (4.5) and (4.6) can be found 

in [77], In the next section, the Galerkin approximation technique to solve Equation (4.6) 

is discussed.

4.2.1 Galerkin Approximation Technique

A finite-dimensional approximation is obtained by assuming the weight and 

temperature function as

n

W = wh = J j waN a
'=> . (4.7)

T = T h = ± T AN A
•<=■ , (4.8)

where and 7*1 are the finite dimensional approximations of w and T. Nj^s are the shape

or the interpolation functions and are defined as

( 4 9 )

where wA, and TA are constants. The shape functions are usually non-zero only on a small 

region of £2 and are defined such that the constants 7^'s typically correspond to 

temperatures at certain key points known as the nodes (see Figure 4.3). From (4.7) and 

(4.8), the mass term of (4.6) can be written as
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Figure 4.3. Discretization of an arbitrary axi-symmetric geometry.
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37^ w n »
iIwhpCP ~~aTrdrdz = ^ L Wa[M ab}Tb
n m  A=\ B=1

where

M ab = \ \ p c pN AN Brdrdz

Similarly, the stiffness term reduces to 

u , ( d T h dwh dTh dwh) , ,

M - » - F + - 5 " a T > * * - 5 S

with

‘ • K m ! ? ) -

The force term becomes 

where

A=1

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

d r h dTh
-nz \ra\

(4.15)

Note 7* in FA is not expanded in terms o f the shape function. Later, the BC’s in (4.2) and 

(4.4) will be implemented in (4.15) to make up the force term. Introducing Equations 

(4.10)-(4.15) into the variation form of the problem given by (4.6), we get

-4=1 S = ) -4 = 1 5 = 1  ,4=1 • (416)

Equation (4.16) must hold for all possible wh and hence for all wA. This is true only when 

+ £ [* « ]2 - ,  = [ ^ ]  V.4 <= {l,2...,n}
5= 1  5=1 (4.17)
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4.2.2 Implementation of Boundary Conditions

The finite element system of equations given by (4.17) can be used to obtain the 

temperatures inside the domain. However, the force matrix whose elements are given in

(4.15) cannot be computed without imposing boundary conditions. In the next three 

sections, implementations of three BC, namely the insulation BC, the convection BC and 

the Dirichlet BC into the FE formulation are illustrated. In the simple problem given by 

Figure 4.2, there are four boundary surfaces and Equation (4.15) is computed as

r3 r4

(4.19)

4.2.2.1. Insulation BC

The general insulation condition is given as 

dTh
dn

= 0
r. (4.20)

where n is the outward unit normal to the line (surface) defined by T,-. The contribution of 

this BC to the force matrix elements is

dr dz ) ‘ I dn
(4.21)

4.2.2.2 Convection BC

At any convection boundary Ty, 

tYr1'
k ^ - + K T h- Tl ) l = o

where n is the same as before and T'b is the outside temperature. Thus from (4.15), the 

force matrix contribution becomes

(4.22)
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F'lr. = JkN‘ 3 T r d r ' = I HN‘ T‘ rdr‘ - \ hN^ r d r ‘
r, m  r, r, (4.23)

Introducing the expression for 7* given by (4.8) into the above equation gives

r, b=\ r, r, *=i (4 24)

with

K ' ^ j h N M r d T ,
r< (4.25)

Note K% is multiplied by the nodal temperatures TB as in the case of the stiffness term in

Equation (4.17). Hence, this term is added to the stiffness matrix and this is shown later.

In conventional FEM, the temperatures inside the domain are found for a given set o f

BC's. Hence T'b is known and FA is computed using Equation (4.24) and the resulting

temperature distribution from Equation (4.17). However, solving the inverse problem,

i.e., finding Tb for a given temperature distribution inside the domain, is difficult using

Equation (4.17) as the relation on how Tb affects the temperatures are embedded in the

force matrix F. This corresponds to knowing (Bu) but not (B) itself of a standard state-

space model

x  = Ax + B u . (4.26)

In order to overcome this problem, parametrization of the boundary temperature is done. 

This parametrization is made in the same fashion as the weights and temperatures and is 

given as

#=ixx
0=> - (4.27)

where lD can be thought as a basis or shape function similar to the shape functions used 

for temperature or weights. \  is the number o f boundary shape functions used for
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approximating Tb and is equal to the number of nodes on the bounding surface I"). Each 

boundary shape function typically attains a value one at the nodes on T) and is non-zero 

in regions that contains the node as shown in Figure 4.4. Hence, ^  are actually the 

boundary temperatures at key points.

Now substituting the definition for Tb in the equation for determining FA given by 

(4.24), we get

d =i b =i (4.28)

with

B ib = ]h N AN lr d r ,
r< (4.29)

The definition o f i s  such that the integration limits for each element o f B f‘ need not 

be the whole boundary surface, rather the small region in which N ^ s  and N ‘bo are non­

zero. The definition also conforms with the requirements of the usual finite-element 

computation procedure where the actual integrals are computed on an element by element 

basis.

4.2.2.3 Dirichlet BC

This BC corresponds to a certain fixed temperature profile r̂, on the bounding 

surface T, and is formally stated as 

T(r,z)  L = Tr
lr- r'- (4.30)

From our initial approximation of temperature given by (4.8), we get

7V ’’z >lr, = Tr, * ^ Ir  = ' L TaN a
1 A=1

= 1 tan a
r, (4.31)

The Dirichlet BC can be implemented by forcing all the nodal temperatures of this set 

to be equal to the imposed profile's temperature, Tr .
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Figure 4.4. Parameterization of convection and Dirichlet BC's.
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The nodal temperatures at the boundary are known and hence it is only required to 

find the other unknown temperatures, i.e., Equation (4.17) is solved for a reduced set of 

unknowns as given below

t  [ M a b  } Tb + £ [ * . »  ]2i =  [F, ] V.4 6 { r  J
B=1 B=\ ,  (4.32)

where } = {1,2,•••,«}-| r ^  J n ow Equation (4.32) can be decomposed into 

knowns and unknowns variables and this results in

Y \ M aB] T , +  1 [ M A, } T , -  J , [ k . , ] t, + [ fa} W s { r , } "
Be{r^  *{r4} oe{r„}

(4.33)

In the next section, all the different boundary conditions are combined and a general force 

matrix is obtained.

4.2.3 Generalization of all Boundary Conditions

Suppose there are JVj insulation boundary surfaces, Nq convection boundary 

surfaces, and Afo Dirichlet boundary surfaces, then the generalized FEA model is found as 

follows. The insulation BC does not contribute to the force term. The convection BC 

alters the force matrix and indirectly alters the stiffness matrix as will be shown later in this 

Section. The contribution to the force matrix due to all the convection BC's is given by

F
A I ConvectionBC

T*B
(4.34)i= l 0=1 B= 1 V i=l

Since the insulation and Dirichlet BC's do not affect the force matrix, we substitute the 

final force matrix into the general finite element equation given by (4.17) to obtain

b =i £ = i i = i o = i  f i= iV < = i /  ( 4  3 5 )
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Combining convection stiffness terms into the general stiffness term in the above equation, 

we get

K %
11i=l Z>=1B = 1 B= 1

rJ = X X K i . f e  VAe{l,2... ,n}
i= l i= l Z>=1 (4.36)

The Dirichlet BC reduces the number of unknowns as shown earlier. The effect of 

multiple Dirichlet boundary conditions on the above equation is given as

1 [ M a, } T b + X  * - + £ [ * 4 ]
s*{rdy *e{rjcL i=i

n = -  X t x
^{F,} ^{r^}L

*■» + £[*& ]
i=  1

™ e { r , y

(4.37)
1=1 £1=1

with

{ r J = U ( r , . }
1=1

At this point, it is advantageous to introduce the following matrix notations

t = { t, }  zr€ { r ,} '

^  = i ]  A , B e [ r , Y
1 = 1

T ' = { T , }  B S { r j

A e { T A ’,B s { T t }
1=1

^ • = K i ]  A € { r , Y , D S { l ,2 - ,n t}

(4.38)

(4.39-4.46)
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Using the above matrix notations into the general finite element equations given by (4.37), 

we get the matrix equation

where M  and K  are referred to as global mass and stiffness matrices respectively. In the 

present formulation, we don't have a conventional force matrix; instead the force matrix is 

composed of three distinct terms. The mass matrix M  and the stiffness matrix K  are 

usually banded matrices. The mass matrix can be converted to a diagonal form using 

lumped mass approximations7 [77], [78] and hence taking the inverse of the rather large 

mass matrix is not expensive. This allows us to write the general finite element equations 

in the following state-space like form

The vector 7f, its derivative and all Tb's are the inputs to the system, some of which may 

be exogenous. As an initial step in the development, we assume all o f them to be inputs to 

the system and we obtain

M T + K T  = - M f  Tf  - K f T f  + £ B f Tb
1=1 (4.47)

T = T f - M ~ ' K f T f  + AT1 Bf%
(4.48)

T = A T + B u (4.49)

with

A — —M~'K

B = [ - M ' lM f  - M~lK f  M~lBA ••• M -'B fK‘}

(4.50-4.52)

7This additional approximation reduces the number of computations significantly.
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Note that the input vector u is composed of the nodal temperature on the Dirichlet 

boundary, its derivative, and the nodal temperature just outside the convection boundary 

(see Figure 4.4). We can decompose the vector u into a set of regular inputs uc and a set 

of exogenous inputs ue such as disturbances and accordingly, g  can be decoupled to 

satisfy

Bu = Bcuc + Beue. (4.53)

Substituting the above relation into the state-space finite element model given by Equation

(4.49) yields

T  = A T + B euc + Beue (4.54)

Note that the states are the temperatures at the nodal points. Let there be q temperature 

measurements at the locations (r,-, zj). The q measurements are represented by a 

measurement vector .y. All the measurements can be determined as a linear combination of 

the nodal temperatures and thus any measurement^, is given as

n

yi = Y*c iBTB { l 2 ,•••,<?}
*=' • (4.55)

with

Cw = N s (ri,z i) (4 56)

If there are Dirichlet BCs, it is possible that some of the nodal temperatures are actually 

inputs to the system rather than the states of the system, and hence writing^,- in terms of 

states and inputs yields

y> ~ >2 ,•••,#}
Be{r<r fie(r }̂ (4 57)

Define the matrices
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y — {x } ie { \ ,2 ,- ,q }
C = [CiB] i e { \ , 2 , - , q } , B e { T Ay

D = \ o ^  [CiB] 0 ^  ( T - l  i e { \ X  - ,q } ,B e { T A}
L J ,(4.58-4.60)

where nrA is the number of elements in the set r , . All other quantities are the same as

defined before. Implementing the matrix notations defined in (4.58)-(4.60) into the output

equation given by (4.57), we get

y  = CT+Du.  (4.61)

As before the input u can be divided into two sets: a set of control inputs uc and a set of 

exogenous inputs ue. Decoupling / j  appropriately to satisfy

Du = D cuc + D eue, (4.62)

allows the output vector^ to be written as

y  = C T +D cuc + Deue 63^

4.3 Finite Element Implementation

The mass, stiffness and the force matrices are computed by solving the appropriate 

integrals. Earlier, it has been stated that the shape functions are defined in such a way that 

the integrals can be computed in an element by element basis. In the following section, 

these issues are examined.

4.3.1 Geometry Discretization

The domain £2 is discretized into small non-overlapping regions or elements. In 

Figure 4.3, an arbitrary domain is discretized into 18 elements. In 2-D, elements are either 

triangular or quadrilateral. There are certain key points on the elements known as the 

nodes. These points occur more frequently on the inter-element boundary and less often
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inside the element. In Figure 4.3, each element has 4 nodal points8. In the remaining of 

this section, all developments are made on the 4-node quadrilateral element.

The discretization may yield elements of different size and shape. Consequently, 

the integral limits are different for each element which makes the computation of the 

stiffness, mass and force terms cumbersome. To overcome this, a transformation is done 

so that any element is of a desired shape and size. Figure 4.5 depicts global to local 

transformation of an element in Figure 4.3. The 4-node element in the local coordinates is 

a square. The transformation is defined in terms of the shape functions. A shape function 

is attached to each node. The actual global coordinates at any local location for the 4- 

node quadrilateral element is given by

K € , n ) = l X ( € , n k
a= 1

0=1 , (4.64)

The shape function must be selected so that the approximation is exact at the nodal points. 

One way to guarantee this is to define the shape function Na 's inside the element such that 

it takes a value o f 1 at the node to which it is attached and 0 at all other nodal points9.

The shape functions are assumed to be piece-wise polynomials. There are 4 constraints

8The element is known as the 4-node quadrilateral element. There are other types of elements such as the 

9-node quadrilateral element, 3-node triangular element, etc. More nodes in an element can 

accommodate more complicated geometries within the element while increasing the number of equations 

(states).

9This need not be the case for some elements such as the 5-node quadrilateral element.
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and hence the polynomial can have four unknowns. The assumed polynomials have the 

form10

N a^ n ) = K + b ^ ^ b i n + b ^ n  

The four constraints can be represented by the following matrix equation

(4.65)

(bl b\ b\ r \ 1 1 n n 0 0 o'*
bl bl bl bl -1 1 1 -i 0 1 0 0
bl bl bl bl -1 -1 1 i AU 0 1 0

W bl bl b l) ,1 -1 1 ,0 0 0 K (4.66)

The above equation is solved to yield the shape function for the 4-node element as

I-*?)

w3( £ n ) = ^ ( i+ S X 1+7i)

- ! X 1+7?)
(4.67)

Note that with this definition, the shape function is zero when the corresponding nodal 

point is not a part of the element.

The bounding surface T7- are made up of several elements boundaries (see Figure 

4.6). This surface is approximated by piece-wise polynomials using the shape functions 

attached to the nodes on the element boundary surface. To see this, consider an arbitrary 

element boundary between node 16 and 20 in Figure 4.5. On this element boundary, £=1 

at every point. Using (4.67), the shape functions N\  and Afy are identically zero. This is 

not surprising as the local nodes 1 and 4 are not on the element bounding surface.

,0The polynomial form must satisfy certain completeness conditions [77, pg. 117].
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Figure 4.6 Discretization of a bounding surface of figure 4.3.
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4.3.2 Approximation of Temperature Distribution and Boundary Conditions

The temperature distribution inside an element is approximated by employing the 

isoparametric concept. Here, shape functions defined in (4.67) to approximate the 

geometry are also used to define the temperature distribution within the element. The 

temperature distribution inside the element is assumed as

-« > (4.68)

where Ta is the nodal temperature at the local node'a' of the element.

The insulation BC across any bounding surface T/ is represented exactly to the 

extent to which the bounding surface itself is represented by the discretized geometry. For 

the convection BC, as stated earlier, the outside temperature on the boundary surface 

r j is approximated by defining additional shape functions for each node on the bounding 

surface. Each boundary surface T/ is made up of n> non-overlapping elemental boundary
p i

surfaces 1 e, as in Figure 4.6 such that

r. = Q rj
>=' (4.69)

The global to local transformation mapping of an elemental bounding surface is shown in 

Figure 4.7. Across each elemental bounding surface over which convection BC exist, the 

outside temperature in local coordinates is approximated by

'' <f=i , (4.70)
Twhere 6* is the outside temperature very near the d  th local node of the element bounding 

Nsurface and ^ is the additional shape function associated with the same node. The 

additional shape functions are defined such that the approximated outside temperature are 

exact very near the nodal points. The simplest shape function that satisfy this requirement 

is given by
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In the case o f Dirichlet BC, the temperature on the boundary surface T/ is equal to a 

known r<. The temperature inside any element is approximated by (4.68). Therefore, 

the temperature profile on any elemental boundary can be best approximated by

r(S,i))|r, -
0=1 r-. (4.72)

4.3.3 Gauss Quadrature Rule

Integration in the local domain is needed to compute the stiffness, mass and force 

terms. The integrals to be evaluated have the form

(4.73)

in one dimension and

\ \ g { ^ n ) d $ d r )
(4.74)

in two dimensions. These integrations are performed numerically. The most common 

numerical integration method is the Gauss quadrature.

In one-dimension, the Gauss quadrature for approximately computing the integral 

in (4.73) is given by

j g{S)d£ = ^ l g ( ^ l) + R = ^ w l g(£, )
/=1 1=1 s ( 4 7 5 )

where nint is the number of integration points, £/ is the coordinate o f the / th integration 

point, M>i is the weight of the I integration point, and R  is the remainder. The two-point 

Gaussian quadrature is given by
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where v '  is the 4-th derivative of the function g  at some point in the interval (-1,1). 

Thus the 2-point Gauss quadrature is 4th-order accurate.

Gauss quadrature in two-dimension to approximate the integral in (4.74) is given

by

j  lg(Z,r])dZdri = :£ w lg(Z!,ril) + R = :£ w Ig($!,ii,)
m i m i  ̂ ( 4 7 7 )

where is the / th integration point coordinates. The 4-point two-dimensional

Gauss-quadrature is 4-th order accurate and is given by

/  , , X /  , , N /  i i )  /  i i N

- 1 - 1

(4.78)

4.3.4 Computation of Integrals

4.3.4.1 Mass Matrix

The elements of the mass-matrix, given by (4.11), is computed on an element by 

element basis as

H

M AB  = \ \ p c pN AN Brdrdz = £  Jj pcpN AN Brdrdz
,=l , (4.79)

where neiem is the number of elements. As stated earlier, the shape functions NA 's are 

non-zero only when the node A is part of the element. Hence, in the 4-node case, each
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element contributes to at most 16 members11 of the mass matrix. In the actual 

implementation, all the 16 non-zero elements are computed as a 4 by 4 elemental mass 

matrix. This elemental mass matrix is added to the appropriate elements of the global 

mass-matrix through the assembling procedure to be described later.

The members of the elemental mass matrix for the /' th element is given by

M ab =  J J  pcpN aN brdrdz

, (4.80)

where 'a' and 'b' are local node number (see Figure 4.5). The above integral is evaluated 

in local coordinates for easier computation. In local coordinates, the integral (4.80) is 

given by

K *  = \](XpNM>V)Nb{&n)['£Na($,T\)ra M,T])d$dT}
-1-1 \a=l 7 ? (4.81)

where ./(£»*?) is the Jacobian determinant given by

.. y dr dz dr dz
(4 82)

The integral in (4.81) is in the same form as (4.77) and therefore the 4-point Gauss 

quadrature is used to evaluate (4.81) approximately.

4.34.2 Stiffness Matrix

The members of the stiffness matrix given in (4.13) are computed as

n*Um .  .  f

1=1 Or, ^ dr dr dz dz )
(4.83)

11 In the heat conduction problem, there is only one unknown per node which is the nodal temperature. It 

is possible to have more than one unknown per node, in which case, the element will contribute to more 

than 16 members of the mass matrix.
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As in mass matrix case, the elemental stifihess matrix is computed and is added to the 

global stiffness matrix through the assembling procedure described in Section 4.3.5. The 

elemental stiffness matrix members for the i th element are given by

n <,

dNa dNb dNa dNb \  . . 
— _L +  JL A  \rdrdz
dr dr dz dz J

(4.84)

The above integral can be computed in the local coordinates as

- 1 - 1

dNa dNb . dN„ dN, v  4 
dr dr dz dz

?i)ra j(£,rj)d%dri
\  a=l (4.85)

The derivatives of the shape function are evaluated using the chain rule and are given by 

the matrix equation

dN d N ' \  (dN„ dN
dr dz

°  —

I as an
£ B p
dr dz
dn
dr dz J (4.86)

with

( % d p f dr d r >-i r dz _ d p
dr dz as Bn _ i Bn Bn
Bn Bn dz dz J dz dr

\B r dz j I as Bn, I as %  ) (4.87)

Using (4.64), the derivatives of the shape function are given as

f  4 dN. . 4 ,d N
dNa dNa } _ \

jdr dz
dN„ dN„
as Bn

- 2 “ —«=» an
4 dN

%  an
4 dN.

c r ‘
(4.88)

With the above relation, it is possible to compute the integrand in (4.85) at any coordinate. 

The integral (4.85) is found by using the 4-point Gauss quadrature. This yields the 

members of the element stiffness matrix.
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4.3.4.3 Force Matrix

The computation of force matrix is quite different from that of the mass and 

stiffness matrix. This is mainly because of the BCs. Three different BCs have been 

considered in Section 4.2.2. The contribution of the insulation BC to the force matrix is 

zero as given in (4.21) and hence nothing needs to be done for this BC. In the case of 

Dirichlet BC, the number of equations is reduced as shown in Section 4.2.2.3. Therefore, 

only the convection BC contributes to the force matrix directly. The convection BC also 

has a stiffness component whose computation is also considered in this section. The force 

and stiffness contribution of the convection BC are given by (4.29) and (4.25) 

respectively. These are computed in terms of element boundaries as

The above matrices are found by computing the elemental bounding surface and then 

adding them to the corresponding global matrix through the assembling procedure 

described in Section 4.3.5. The elemental integrals in (4.89) and (4.90) in the local system 

of coordinates is given by12

(4.89)

(4.90)

(4.91)

(4.92)

,2This transformation is valid only for piece-wise linear shape functions.
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where ) is the length of the element bounding surface ^ . Note that on any element 

bounding surface in the local coordinate, either £ or r| is changing. The above integrals 

are valid for bounding surface over which only £, is changing. In the case of changing t|, 

the elemental integrals in (4.91) and (4.92) are obtained by replacing all £ by tj. Now, the 

one-dimensional 2 point Gauss quadrature formula given by (4.76) can be used to 

compute the integral (4.91) and (4.92) numerically. This would yield the elemental force 

contribution due to convection BC.

4.3.5 Assembling of Elemental Matrices

Initially the global mass and stiffness matrices are made zero. The 4 by 4

elemental mass and stiffness matrices have to be added to the appropriate members o f the

corresponding global matrices. For any /' th element, let the global node numbers

”  2’ 3’ 4 '■ For example in 

Figure 4.3, corresponding to local node numbers o f element 12, the global numbers are 

(15,16,20,19). The contribution of the i th element to global matrices is given by

M , , = M ,,  + M l
ajak ayjJ (4 .93)

K , , = K , , +K%
i  “j° t  J* ( 4 . 9 4 )

The global Bf‘ and K f‘ matrices are computed by assembling the contributions 

from each elemental bounding surface. In the local coordinates, any elemental bounding 

surface j  has a local node numbering ( 1,2) and the corresponding global node number 

(a \ >a 2). Also, the outside temperature shape function number corresponding to the local 

nodes (1,2) is ). The contribution of the j  th elemental bounding surface to the 

global Br‘ and K f> matrices is given by

Bf‘„, = B f\., + b £>
(4.95)°ibL °{bL ' MJkm
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Now all the global matrices are computed; i.e., we have all the known matrices in 

(4.35). A state-space model can be obtained by following the procedure in Section 4.2.3.

4.4 Summary

An approach to obtain a state-space model of an axi-symmetric heat conduction 

energy equation using FE approximation is presented. To simplify the development o f FE 

model, the formulation is presented for a specific element, i.e., 4-node quadrilateral 

element. The general theoretical development and the actual implementation procedures 

are discussed in this chapter.

In the following chapter, the state-space model is used to design a controller that 

would establish a necessary temperature distribution inside the material.
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CHAPTER V

CONTROLLER DESIGN ASPECTS OF HEAT CONDUCTION EQUATION

A lumped state-space model o f the boundary controlled heat conduction system 

can be obtained using the procedure developed in the last chapter and is given as

T = A T + B cuc + Beue

y  = C T + D cuc + Deu \  (5 ^

where T e 9T is the nodal temperature vector, s  is the control input vector that 

can be varied as desired, u‘ € 9?m* is the exogenous input vector that cannot be varied, and 

y  e  is the measurement vector.

5.1 Open Loop System Properties

The lumped system in (5.1) is said to be open-loop stable if all the eigenvalues of 

A have negative real parts, i.e.,

n a l (X , {A ) ) < 0  W  ( ;  2 )
where ( ) is the / th eigenvalue. The system in (5.1) is assumed to be stabilizable and 

detectable1. If this is not the case, there is a need for more actuators or sensors to control 

the system. The number and locations of sensors and actuators may be such that some 

states (or some linear combination of states) are either uncontrollable or unobservable. 

These states, however, are stable due to the stabilizability and detectability assumptions.

•See Sections 2.5.2 and 2.5.3 for definitions and some discussions.

70
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A minimum realization of the system (5.1), found by retaining the controllable and 

observable modes, can be used to design a controller as shown later.

In any lumped model of DPS, it is possible to have states (or a linear combination 

o f states) that are either weakly controllable or weakly observable. Qualitatively, a state 

is said to be weakly controllable, if a small change in the state requires a very large input. 

Hence, if a controller tries to alter a weakly controllable state, it would request a large 

control input from the actuators, i.e., the controller gain is high. Similarly, a state is said 

to be weakly observable, if a small change in the output is created by a very large change 

in the state. This would make the observer2 gain very high. A judgment on the number of 

weakly controllable and observable states can be made by computing the Hankel singular 

values of the system, which are given by

A significant drop in o ;- after the k  th singular value would be observed if there are (n-k) 

weakly observable or controllable states.

5.2 Reduced Order Models for Controller Design

A practical controller that tries to alter the dynamics of weakly controllable or 

observable modes will either saturate the actuators due to high control gain or be too 

sensitive to sensor noise due to high observer gain. Both saturation of actuators, and

2Observer is a state-estimator that uses inputs and outputs of the system.

(5.3)

with °i -  an -  Wc ancj Wa ^  controllability and observability Grammians of

the system and is found by solving the following Lyapunov equations

AWc+WcAt + B c(Bcf  = 0  

A tW0 + W0A + Ct C = 0 (5.5)

(5.4)
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sensitivity to sensor noise are undesirable in any control system. Hence, the controller can 

be designed using a Reduced-Order Model (ROM), in which all the weakly controllable 

and observable modes are eliminated. The balanced truncation method can be used for 

obtaining the ROM and is described in the following section.

5.2.1 Balanced T runcation Method

In this method, an invertible transformation matrix P  is used to transform the 

system into balanced system of coordinates [78] such that

The controllability grammian Wc and the observability grammian W0 o f the transformed 
system have the following form

The aj's are the Hankel singular values of the system. Since there are /  non-zero ctj's, the 

minimum realization has an order /. A significant drop in a,- after the k th singular value 

would be observed if there are (n-k) weakly observable or controllable states. The k < I

jii _  p~^p (5.6)

Here P  is new state-vector containing a linear-combination of nodal temperatures. In the 

new coordinates all system matrices are transformed as

(5.7)

L2, 0 , 0 ) e 9r "
W0 =diag(l.l ,0 , 'L „ 0 )eW * '' (5.8)

where Zj, Z2, Z3 are positive definite diagonal matrices with 

L, = diag{c], c 2,— ,o l) (5.9)

with

G i -  < V * ' -  ° i  > a M  = - - = a „ = 0 ;
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order ROM containing the modes associated with k  largest Hankel singular values can be 

obtained by partitioning the transformed system as

T* =
T[
t

A = Aa Bc =
Bl

B e = Bl
lb I jAv, Aii.

C = [C, C2] F  = [/] P2] (5.10)

where An e  A22 e  ancj au 0ther matrices are o f appropriate dimension.

The ROM after elimination (n-k) weakest controllable\observable modes is given by

t l  = AnTl + Bluc + Blue

y  = y r =ClT]‘ +Dcuc+Deu'. ( 5 n )

Several balancing methods have been developed to obtain the transformation 

matrix P  and most of them require a minimum realization of the original Full Order Model 

(FOM). This is not always available, even when this condition is satisfied, the system may 

be weakly observable/controllable and hence for all practical purposes, the system is non­

minimum. The numerically robust Schur method [79] has no minimality requirement and 

therefore can be used instead. Here a k  th order ROM that retains the most controllable 

and observable states is directly obtained as follows

A\i = $Lj>igASRMg
Df   c' D c D e   O' £>*B\ — ^lj>igB B\ -  <jijbigB

Dc = Dc D' = DeQ — c s RMg (5.12)

Si. Mg, SRbtg are matrices o f dimension n by k and are computed using the orthonormal 

basis for the left and right eigenspaces associated with the k  largest eigenvalues o f the 

matrix {WCW0). The matrices Wc and W0 are the controllability and the observability 

Grammians of the FOM.
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5.2.2 On Other Model Reduction Techniques

There are other methods such as Routh approximation, Aggregation, Singular 

perturbation that may be used to generate ROM. These methods do not necessarily retain 

the most observable and controllable modes in the ROM; rather, they optimize other 

criteria such as matching low frequency response of the original system, approximating 

impulse response etc. These methods are not utilized in this work as the main purpose of 

a ROM is in the design of controllers that excite the most controllable and observable 

modes alone.

5.3 Controller Design

A feedback controller can stabilize the system, shape the transient response as 

desired, and establish a specified temperature distribution. The controller is designed 

using the ROM. The design is performed in two stages. In the first stage, an observer 

based state-feedback controller is designed to shape the transient dynamics as described in 

Section 5.3.1. In the second stage, the desired temperature distribution is established by 

adding an appropriate bias to the state-feedback control law as shown in Section 5.3.2.

5.3.1 Shaping Transient Dynamics

State-feedback is the most general linear control law and is given as

where Ks is the state-feedback constant gain matrix. With the above control law, the 

transient response of the lumped system can be shaped to satisfy reasonable design 

requirements. The state-feedback controller is designed as a Linear Quadratic Regulator 

(LQR). The LQR is found by minimizing the following quadratic performance

(5.13)

0 (5.14)
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where Q and R  are weighting matrices of appropriate dimension. The state-feedback gain 

that minimizes the cost in (5.14) is given by

K . — K * W r X  (5 1 5 )

where X  > 0 is the solution of the Riccati equation

A\xX  + X 4 U -  XB]eR-'(B]' f x  + Q = 0 (5 16)

The weighing matrices Q and R  are the design parameters that can be selected to give a 

reasonable transient response. The closed-loop system is given by

r  = AclT> + B 'u '  (517)

with

A i +BjKs An
A ,  +b ; k s (5.18)

The transient response of the closed-loop lumped system is determined by the matrix A cl.

To implement the state-feedback controller, it is necessary to measure all the states 

of the ROM, i.e., T’. The measurements of all states are very rarely available and hence 

the states are reconstructed from the available measurements using an observer. In this 

case, the control law in (5.13) is modified as

(5.19)
rTyl 'Iwhere T{ is the estimate of Tx and is found by using an observer. The observer dynamics 

is governed by

?! = An f l  + B y  + B y  + I.(y  - C f i  -  D cxuc -  £>,V) 5 (5 20)

where L  is the observer gain matrix that is selected to shape the estimated state transient 

response. The separation principle [80] allow us to design the controller and the observer 

separately. The observer is designed as a Linear Quadratic Estimator (LQE) using the
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ROM. The LQE is a dual problem of the LQR and the observer gain is found by 

minimizing a performance index similar to (5.14) that includes the effect o f state 

disturbance and measurement noise. For an optimal LQE, the weighting matrix Qa is the 

covariance of state-disturbance and the weighting matrix R0 is the covariance o f the 

measurement noise. In this section, we treat these weighting matrix as design matrix to 

shape the transients of the estimator. The observer gain L that minimize the LQE 

performance index is given by

L -  ~ X aCj Ra~\

where X a > 0 is the solution of the Riccati equation 

A„X0+ X X  -  X 0CtTR~'CtX 0 +Q, =0 

The closed-loop system is given by

(5.21)

(5.22)

' a u a X2 % k , •M f ^  l f 0'
Tl2 = A21 A22 B2 Ks Tl2 + Bl u' + 0

T\ J\ , 0 0 A,, + Bx Ks -  LCX -  LD\ Ks j f ‘V ' b ; - l d ^
y

a* (5.23)

The transient response of the controlled lumped system is determined by the A c\ matrix. 
The transfer function of the dynamic controller in the Laplace domain is given by

u(s) = Ks( s I - A n - % K , + L q + L D 'K j y '(L y(s)  + (B,c - LDf)u‘{s))
(5.24)

5.3.2 Reference Tracking

In addition to shaping the transient response, the controller has to establish the 

desired temperature distribution inside the material. The required nodal temperatures, 

denoted by Td, corresponding to any desired temperature distribution inside the material 

can be found by using the approximation in (4.8). Therefore, the reference tracking 

requirement is achieved if, in the steady state,
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(5.25)

In the balanced coordinates, achieving (5.25) is equivalent to satisfying 

T1 = P~% .

To achieve this, a bias input u  ̂is added to the control law in (5.19) as 

u; = KsT‘ +ub

The states of the controlled balanced system in the steady state is given by the solution to 

the system of equations3

(5.26)

(5.27)

X + Z K  42
A21+Bz Ks An

T‘(oo) = - ( B cub + B 'ue)
(5.28)

Hence, the bias input that would achieve (5.26) must satisfy the matrix equation

B cub = 4 i  + % K  An
+ B \K  An

r ' z - B eut = v
(5.29)

A bias input ub exist, if the vector v lies in the range space of Bc. A formal set of 

conditions for the existence of the bias input for an arbitrary reference is given in a later 

section. In Section 5.4, an example is presented to demonstrate the modeling and control 

design technique developed in Chapter IV and this chapter.

5.3.3 Robustness o f closed-loop system

P  1— ©O
The LQR guarantees a minimum Gain Margin (GM) of V 2 ’ )  and a minimum 

Phase Margin (PM) of ±60° in all the loops that may be formed at the input side of the 

plant [81], An estimate of the actual GM and the PM can be obtained by computing the 

smallest singular value o f the return difference G(s) at the input for all frequencies [82]. 

If one chooses a positive number a  such that

3 We assume that the observer has no steady-state bias, i.e., A  (°°) — (<»)
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(5.30)

where ^ ( ’) denote the smallest singular value, then there is a guaranteed gain margin of

GM -
l ± 0 f (5.31)

and a guaranteed phase margin of

(5.32)

For the observer-based controller, there is no guarantee on any minimum GM and 

PM [82]. The observer-based controller may be unstable even though the closed-loop 

system is stable. These defects can be overcome by a proper choice o f the observer design 

matrices Q0, R0. The Loop Transfer Recovery (LTR) [83] procedure is one way to 

design a stable compensator4 and recover the robustness properties that the state-feedback 

controller for the observer-based controllers by appropriately choosing the weightings.

This approach can be found in [83] and will not be described in this Section.

5.4. Illustration o f the Modeling and Control Techniques on a Simple Problem

The simple conduction problem illustrated in Figure 5.1 is modeled in this section. 

The material is inside an axi-symmetric cylinder. The top and the bottom of the cylinder 

are insulated. The cylindrical material is inside a furnace. The furnace is capable of 

establishing an axi-symmetrical temperature profile with varying temperatures along the 

length of the cylinder. Heat transfer from the furnace into the material occurs through 

convection. The BCs for this problem are given by the following set of equations

4Valid only for minimum phase systems
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Figure 5.1. Discreitzation of the surface § =0.
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Figure 5.2. Parameterization of convection boundary condition.
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The control problem is to determine the boundary temperature 7), so that a prescribed 

temperature distribution can be established inside the material. Later on, the desired 

interface shape is specified in terms of a desired temperature distribution. In order to 

obtain a FE model, the domain has to be discretized. The domain is discretized into a 5 

by 9 grid resulting in 45 nodal points and 32 elements as shown in Figure 5.1. Since this 

problem has no Dirichlet BC, all the nodal temperatures are unknowns and hence the state 

space model has 45 states. The convection boundary surface temperature Tb is 

approximated by 9 basis functions Hence there are 9 control inputs and they correspond 

to the boundary surface temperatures at certain key points (see Figure 5.2). Also, there is 

no exogenous input ue.

The outputs from the system are limited due to practical considerations. Four sets 

o f output measurements are considered and they are

(a) All states are measurable, i.e. c  = / .

(b) Only the nodal surface temperatures T3 are measurable (see Fig 5.2). This set of 

measurements results in a set of collocated sensors and actuators.

(c) The nodal outside surface T3 and the center surface T, temperatures are 

measurable.

(d) The nodal outside surface T3 and the nodes at the radial direction on the surface 

z=0.5*L, with L being the length of the cylinder are measurable. This configuration may, 

for example correspond to crystal growth, if the interface shape can be observed using 

imaging techniques.
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Of the four sets, (a) is not practical and (b) is the most practical set of 

measurements. Set (a) of measurements result in all states to be equally observable while 

with set (b), (c) and (d) some states may be weakly observable or completely 

unobservable. A Hankel singular values plot of all the three systems are given in Figure 

5.3. From the figure, the set (a) corresponding to all states being measured has larger 

Hankel singular values than any other set. Also, we can see that there is a significant drop 

in Hankel singular values for systems (b) and (d) around the 36th singular value. This 

qualitatively implies that about 9 states in (b) and (d) are very weakly observable with 

respect to other states.

Initially, all boundary temperatures are made 1.0 and the nodal temperatures 

corresponding to this open loop control are shown in Figure 5.4. Due to the symmetry in 

the input, initial conditions and the geometry, all the nodes in the same vertical line have 

the same temperature. In the steady state, all the temperatures go to 1.0. The open loop 

lumped system is stable with very slow transient behavior and takes more than 8 hours to 

reach the steady state.

The regulator design is performed to improve the transient response. I f  all the 

states are measurable as in set (a) of measurements, the state-feedback controller given by

(5.13) can be used for this purpose. Further, there are no states that are weakly 

controllable. Hence, the controller design is performed using the Full Order Model 

(FOM). The state-feedback gain is found using (5.15) by appropriately choosing the Q 

and R  weighing matrices. For this problem ( 2 = 1 0 / and R  = /  yielded the reasonable 

transient response. In order to compare the response of closed-loop system to the open- 

loop system, an additional bias input is included as in (5.27). The bias input u^ is selected 

such that all the points in the cylinder are at temperature 1.0 as in the open-loop case and 

these are found using Equation (5.29). Note, since we did not change coordinates, P  = I.
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The simulated nodal temperatures are shown in Figure 5.5a and the corresponding 

controller output are plotted in Figure 5.5b.

The state-feedback control cannot be implemented for systems (b), (c) and (d) as 

all the states are not available for feedback. To overcome this problem, an observer may 

be designed and this requires all the states to be observable through the measurements.

All states are observable through measurement sets (b), (c) and (d) as is evident from the 

Hankel singular value plot. However, many modes are very weakly observable, especially 

for systems (b) and (d). Hence, the control design must be performed using a ROM. The 

ROM is found using the transformations in (5.12).

The separation principle [80] is exploited to design the controller and the observer 

separately. Both the observer and the controller gains are designed using the ROM. The 

state-feedback gain K  is determined as before using Equation (5.15). In order to have the 

comparable cost as in the previous case, the Qr and Rr matrices are selected as

Q r  =  S R,b,gQSR.b,g

R' = R  , (5.34)

where Q and R are the weighing matrices for the system (a). The observer is designed as a 

Linear Quadratic Estimator (LQE). The LQE weighing matrices are selected as Q0 = 101 

and R 0 = I. The observer gain L  is determined using (5.21). The control law in (5.27) is 

used to impose a temperature o f 1.0 everywhere inside the material. This is achieved by 

choosing bias input using (5.29).

In the present design, all observer based controllers have some unstable modes.

All the unstable eigenvalues have very small real part. The closed-loop system is stable.

The gain and phase margins are computed using the return difference at the input. All 

controllers have margins that are not too different as the state-feedback controller. Even 

with good robustness of the closed-loop system, the idea of using an unstable 

compensator for a stable plant is not logical. This observer must be re-designed using
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Figure 5.5(b) Boundary nodal temperatures requested by 
the controller.
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LTR technique if applied on a real system. However, for the illustration o f control 

methodology, the present controller is satisfactory.

This observer based controller with an appropriate bias is implemented on systems 

(b), (c) and (d). The reduced order model for system (b) has 27 states, as there is a 

significant drop in the Hankel singular value beyond 27. The nodal temperatures under 

the observer based control are given in Figure 5.6(a) and the corresponding controller 

output are given in Figure 5.6(b). For the same cost, the observer based controller is 

slower than the state-feedback controller. Similarly, for system (c), the reduced order 

model has 36 states and the simulated nodal temperatures and the controller output are 

given in Figures 5.7(a) and 5.7(b). In the case of system (d), 27 modes are retained in the 

reduced model. The simulated nodal temperatures for this system operating under closed- 

loop is plot in Figure 5.8(a). The boundary input that establishes this temperature is 

plotted in Figure 5.8(b).

In this example, the controller is designed to shape the transient response and the 

desired temperature distribution inside the material is obtained by suitably choosing the 

bias input. The bias input is found as a solution o f an algebraic equation in (5.29). A 

solution to this equation may or may not exist. Hence, it is possible that there is no bias 

input that would establish a certain desired temperature distribution. In the next section, a 

set o f necessary and sufficient conditions are derived for the existence of the bias input.

5.5 Necessary and Sufficient Conditions for Tracking Arbitrary Temperature Distribution

In many situations, it is necessary to establish a certain distribution inside the 

continuum. Depending on the location of the actuators and sensors, this desirable 

distribution may or may not be feasible. For example consider the problem of heat 

conduction in a bar shown in Figure 5.9, where the bar can be heated or cooled from one 

end. The other end of the bar is insulated. It is physically impossible to achieve a
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Figure 5.6(b) Requested boundary nodal temperature by the controller.
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Figure 5.9 One-dimensional heat conduction problem. In the 
steady-state, it is not possible to have the 
temperatures at points 'a' and 'c' to be higher 
than the temperature at point V .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

92

temperature distribution that has higher temperatures at points 'a' and 'c' than point 'b' in 

the steady state. Such informations are embedded in the state-space model. However, 

there are no general conditions that one may use to extract these informations. The main 

motivation o f this section is to develop necessary and sufficient conditions for establishing 

a given distribution inside the continuum. Further, if a particular distribution is not 

achievable, a procedure is proposed to find the closest distribution that is achievable in the 

weighted least-square sense.

State-space realization of the lumped DPS is given by (5.1). The exogenous inputs 

ue is assumed to be constant. It is possible to redefine the "zero" state and "zero" output

of the system to the steady state established by ue. With this definition, the state-space

realization of the lumped heat conduction equation is given by

T = A T  + B cuc

y  = C T + D ‘u \  (5 35)

where the pair ) is stabilizable and the pair (^>^) is detectable. A fictitious 

measurement vector z  e  91" containing all state-variable is introduced as follows:

z  = T  (5.36)

The matrices B c and C  are assumed to have lull column and row ranks respectively. The 

problem of establishing a distribution can be transformed to the following requirement

Z = T» (5.37)

where T j  is the desired nodal temperature.

The state-space system of DPS in (5.35) is not minimal most of the times due to 

practical difficulties in having enough sensors and actuators. Some states may not be 

controllable. The controllable subspace Xc of the system is defined as follows:

X e -  {xc e  SRn: 3 u(t), 0 < t < r  < <» such that x( r) = xc V initial conditions}
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All states of (5.35) are observable through the fictitious measurement 2 in (5.36) as ( A ^ )  

is completely observable. Hence, a minimum realization can be obtained by eliminating 

the uncontrollable states. This is done by using a non-singular matrix P  to transform the 

coordinate system as 

/
x = P ' ]T = xc

x„ (5.38)

where xc e  91' and xnc e  9T_/. The state-space model in the new coordinates is given by 

•

x  = Ax+Bu  
y  = Cx + Du
z  = Px (5 .39)

The matrix P  is selected so that the matrices .<4, B  have special structures as given below:

A = Pr 'AP = \ ' M" ^0  B = P~'Bc = i B̂A 1 A)
0

C = P C  = [Q C2]

P = [P' (5.40)

Here, the pair (A/ j,Bj) is completely controllable. The controllable subsystem of (5.35) is 
given by

x c =Anxc +Bxu 
y  = Clxc + Du

Z = P'X' (5.41)

Since P  is invertible, P\  has full column rank . B\  is assumed to have full column rank5. 

Also, because o f the stabilizability assumption all uncontrollable modes are stable and

5If this is not true then the actuators are not linearly independent of each other and therefore can be 

represented by a reduced set of linearly independent actuators.
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therefore xnc —» 0 in the steady-state. Further the input u does not excite xnc and 

therefore non-zero initial conditions are created by disturbances.

Proposition 1:- The controllable subspace Xc of for the system in (5.35) is the same 

as the range space of the matrix Pj.

Proof:- Let v e  such that v is not in the range space of Pj. Hence v can be written as 

v = / > ,  + P2w2 = />[W|r w t2 ]r , w2 *  0

This implies that the corresponding P~lv has the form L 1 2 J with w 2 *  ® and

therefore is in the uncontrollable space of the system in (5.35). This is a contradiction. 

Therefore v is in the range space of Pj.

The above proposition provides enough justification for using the system in (5.41) 

to characterize the trackability of the system in (5.35).

Theorem 1: Consider the system given by (5.41) with the pair ) being

controllable. Any constant desired temperature distribution Td e  SR" can be reached by 

the system, i.e., z (t) = Td for some finite t > 0 from arbitrary initial conditions of z  if and 

only if Td is in the range space o fP\.

P ro o f:

Sufficiency: Suppose 7^ is in the range space of P\, then there exist a xc such that

Td = P\XC. Further, since P\ has full column rank, xc is unique and is given by

xc = P\) P\Ti ■ Since the pair ( ^ n , B\ ) is controllable, there exist a control sequence

u that can take the state vector to a desired xc for some finite t > 0 from arbitrary initial 

conditions. This implies that z (t) = Td for some finite t > 0.

Necessity: Trivial as z = P:xc = Td implies Td is the range space of P\.

The above theorem does not provide any solution regarding the tracking of desired 

temperature in the steady state. Before deriving a new condition for steady-state 

trackability, the system is assumed to be controlled using the following control law
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where K  is any stabilizing state-feedback gain and is the bias input for achieving non­

zero steady state. The control law in (5.42), implemented using observers, includes all 

controllers that have an order less or equal to the number of states /  o f the system in 

(5.41). The closed-loop system for the control law in (5.42) is given as

xc = (An +BlK)xc + Bxub = Fxe + Bxub 

y  = Cxxc +Du

z = pixc (5.43)

Theorem 2: Consider the system in (5.41) with the pair (-^n , ) assumed to be

controllable and the pair (^u ’ ) to be detectable. The system is controlled using a

stabilizing control gain K  as in (5.42) and the resulting closed-loop system is given by

(5.43). Any constant reference temperature distribution can be tracked in the steady 

state if and only if the following conditions hold

(a) Tj  is in the range space of P\ and

(b) the quantity w, defined as w = p {p\ P\) p\ Pd is in the range space of P j . 

Sufficiency: Since Pd is the range space o f P j, the quantity w can be defined as

P\ P\) P\ Td Also w is in the range space of P j. Hence there exist a v such that
B y  = - w  = -F (P ?P ,)"p?T d

Let the bias input = v for all t >0. Since the closed-loop system is stable, the steady 

state solution exists and the state-vector is given by

Hence in the steady-state z  is given by

Necessity: By Theorem 1, Tj  must lie in the range space of P j. Hence there exist a w 

such that Pd ~ . Further since P j has full column rank >v is unique and is given by
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w = (P TP)~' P rT ̂ 1 1' 1 d. Now the state-vector in the steady state is given by w. This implies

vt' = Fw = —Bxub Hence w is in the range space o fB\.

Note the detectability condition on the pair ) js not used by the proof.

However, this is necessary for the implementation of a stabilizing gain K  in the control law 

given by (5.42). The above theorem provide a condition for tracking in the steady state. 

This condition depends on the closed-loop matrix F  and hence depends on the state- 

feedback gain. In the next theorem, it is shown that if the given reference r satisfies 

conditions in theorem 2 for one stabilizing controller then it satisfies the condition for 

every other stabilizing controller.

Proposition 2:For any two gain K\ and K2 for which (axx + p ^ x) and (axx + BXK2) are 

Hurwitz, Range[(Ax, + BxKx)"‘Bx) = Range{[AxX+BXK2)~'B^.

Proof: Let x  e  Range{i<AxX+BXKX) Bxj Then there exist>> such that 

x = ( A II+ B1Kt)-'B1y

This implies [A\ + B\K2)x = Bx{ y - ( K x - K 2)x) 

or x = { A u +BxK2y 'B x( y - ( K x- K 2)x).

Hence * e  RanSe((Au +BxK2)~'b x)

Theorem 3: Let the system in (5.41) be stabilized using the control law in (5.42). The 

control gain is given by K\ and the corresponding closed-loop system matrix is given by 

F\. Any desired temperature distribution Td that can be tracked in steady-state for this 

controller can be tracked by any other stabilizing controller K2 with the closed-loop 

system being F2.

Proof: By Theorem 2, the reference Td is in the range space of P\ and the quantity wy 
w = f [p tp \~x P t Tgiven by 1 1 1' ' d is in the range space o f B\. This implies there exist v such

that

wx= B xv
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Further F\ is Hurwitz and hence invertible. This implies K  w\ = K  A v , i.e., w\ is in 

the range space of ^  By proposition 2, ^  ^  is also in the range space of ^2 B\. 

Hence there exist a v such that

or F2F~'wx is in the range space of B\. Now, the quantity w2 is given as

Thus from the above relationship w2 is also in the range space o fB\.

Proposition 3: Any desired temperature 7^ satisfies conditions (a) and (b) of theorem 2 if 

and only if 7^ is in the range space of 0 = P]F~lBl.

Proof:

Sufficiency: Let 7^ be in the range space of <(>. Hence there exists a v such that

d 1  ̂ 1 Therefore, is in the range space of Pj  satisfying condition (a) of
theorem 2. Now, the quantity w as in defined in theorem 2 is given by

w=F(P;TPty ' p ^  = F(p’p ,y 'p 'p , ( r 'B ,^ B ,v

Therefore, w  is in the range space of Bj satisfying condition (b) of theorem 2.

Necessity: Let T j  satisfy conditions (a) and (b) o f theorem 2. Since the quantity w is in

the range space of Bj, there exist a v such that 
w = F(P?P,y'p?TJ = B,v

Since Td is in the range space of Pj

Td = Px(P?Px)"p?Td =PxF~xBxv = <pV

Therefore 7^ is in the range space o f <j>.

Proposition 4 The <|) matrix is invariant to similarity transformations M  that transforms 

the system (5.41) as

{An,BxA,P,)^(M^AuM,M^BxAM,P,M) = (AuXQ,P,)

Proof: It is easy to show that the closed loop matrix F  is transformed to M~XF M .

The transformed 0 matrix is given by
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0 = PXF~%  = P{MM~} FMM~X B] = P]F~'Bi = <f>

In many instances, the desired temperature may not be achievable in the steady- 

state. In these situations, it may be necessary to track a temperature distribution that is 

close to the original requirement. The closeness may be defined by the following 

performance index

J - f c - i f w f c - t ) '  (542)

where ^  is the closest temperature distribution to the original reference 7^ that can be 

achieved and W is a positive definite matrix and therefore the following decomposition can 

be done

W = S TS.

The procedure to find this optimal ^  is given in the next proposition.
A

Proposition 5: For a given desired temperature distribution Tj, the optimal ^  that 

minimizes J  subject to satisfying conditions (a) and (b) of theorem 2 is given by

= f w T d

Proof: By proposition 3, Td must be in range space of <}>. This implies for every Td there 

exist a corresponding 0 € such that Td = (f>6. Therefore the performance index J is 

given by

j  = (rd -<pe)rw(rd -<pe)

The 0 corresponding to optimal Jean  be found in [88, pg 308-309] and is given by

e=[fw<t>]~'<pTwTd

and hence Td is given by

f d =<p[<pTW<p]~'<!>TWTd.
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5.6 Note on Observability

All conditions derived in the previous section used the controllability o f the pair of

{ * ■ * )  and the observability of the system through the fictitious output z. Some of the

controllable modes may be unobservable through the actual measurements^, i.e., the pair

( 4 i  > Cx) js unobservable. In this situation, we cannot verify if the desired temperature

distribution is established by the bias input through the on-line measurements.

Proposition 6 : Any trackable distribution Td that is in the range space of <|> is observable
w = (P T P)~' P t Tthrough the measurement^ if and only if v 1 >/ 1 d can be written as a sum of

observable eigenvectors o iA jj ,  i.e.,

w = Yakivi’ C,v, *  0 , '  = 1.2 -• • ,na
i=i

where v,- is the eigenvector of A j j  and n0 is the number of observable eigenvectors.

Proof: Follows directly from the definition o f observability.

5.7 Extension of Conditions to Systems with Weakly Controllable modes

In practice there are many states that are weakly controllable using the available 

actuators. In Section 5.2, a ROM is obtained by eliminating these weakly controllable 

states. In this section, the original system in (5.35) is assumed to be asymptotically stable 

and hence it is feasible to find the grammians o f the system. The weakly controllable 

states o f the original system in (5.35) are determined by finding a a non-singular matrix P  

to transform the coordinate system as

/  v- N
x = P~]T  =

(5.43)

where x<= ^  and wc The state-space model in the new coordinates is given by

•

x  = Ax+Bu  
y  = Cx + Du

z = Px (5.44)
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The matrix P  is selected so that the controllability grammian of the transformed system is 

diagonal. The controllability grammian of the original system can be found by solving the 

Lyapunov equation given by (5.4). The controllability grammian of the transformed 

system is given by

= P ~ ^ P ' T. (5.45)

As Wc is positive semi-definite matrix, the following factorization can be done either

through singular value decomposition or symmetric eigenvalue eigenvector decomposition 

Wc = ULUt , UUt = 7)

where

Z = diag(o1, o 2,---,on)

(7, > a 2" > a ,> a M =--.= c n =0 

Hence, if we let P=U, the transformed controllability grammian is given by

wc = p-'wcp - r = u tu l u tu  = z

In the new system of the coordinates, the system can be partitioned as 

A = P - 'A P  = f A" " M  B = P-'BC = f B ' )
\ - ^ 2 1  ^ 2 2 /  U J

C = PC = [c, c 2]

P = t/ ' (5.46)

The ROM after elimination (n-k) weakest controllable modes is given by,

Xc = Auxc + BjU 
y  = C]xe + Du

2 = P'xc , (5.47)

where the controllability grammian of the ROM is given by

Z, = diag(ax, cr2,• • •, <7t ) (5 48)
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Proposition 7 Any desired temperature distribution Td can be approximately achieved in 

the steady state without exciting the (n-k) weakly controllable modes, if 7^ is in the range 

space of ^ = PxA~]Bl

Proof: The ROM found by preserving the k most controllable modes is given by (5.46). 

Further, it can be shown that A j j  is Hurwitz [84], Hence, an extension of theorem 2 and 

proposition 3 would yield the desired result.

Further, if the desired temperature Td is not in the range space o f <j> then the result 

in proposition 5 can be used to find ^  that minimizes the performance index in (5.42).

5.8 Integral Control

In the earlier section, non-zero steady-state temperature distribution are

established by using a control law that has a constant bias input. The required bias input is

obtained from the state-space model of the system. Due to the inevitable modeling errors,

the actual temperature distribution is not the same as the desired temperature distribution.

The tracking itself is as good as the model of the system.

On-line measurements of the system can be used to overcome the modeling errors.

In the earlier section, we used these measurements for shaping the transient dynamics.

The same measurements can be used to alter the bias input thereby compensating for

modeling errors, plant disturbances. The general tracking requirement is given by 

z ~Td

Only a few state-variables of the z (or a linear combination of them) are actually measured 

and this is denoted byy. Integral control is one method by which the on-line 

measurements are utilized to determine the input to the system. However, this method 

can track only the measured outputs, i.e., can achieve only 

y = r
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where r  is the desired outputs. The integral control strategy has been modified to 

accommodate state tracking and this technique is known as the pseudo-integral control 

approach [87]. At this time, we determine inputs in open-loop fashion and leave this type 

o f implementation for the future.

5.9 Summary.

The lumped state-space model of the heat conduction equation is used to 

implement a desirable temperature distribution inside the material by manipulating the 

boundary conditions. When some states are weakly controllable or observable, a ROM is 

found by retaining the most controllable and observable modes. An observer based state- 

feedback controller is designed by using the ROM to shape the transient response o f the 

system. Desired temperature distribution inside the material is established by computing 

the appropriate bias input. Some general conditions regarding the existence of the bias 

input for a certain desirable temperature distribution are developed in this section.
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CHAPTER VI 

STATE-SPACE MODEL OF HEAT CONDUCTION PROBLEM WITH PHASE 

CHANGE

This chapter deals with the modeling aspects of the heat conduction problem 

including phase change. The AHC formulation as described in Section 2.5.2.2 is 

employed to yield a non-linear, fixed boundary heat conduction type governing equation. 

The technique described in Chapter IV is applied to the governing equation obtained using 

the AHC formulation.

6.1 Apparent Heat Capacity Formulation

The heat conduction problem with phase change is described by (2.2). In the AHC 

formulation, the governing equation for solid, liquid and interface regions are given by one 

equation as given below

cA( T ) ^ -  = V - ( k V T )
& (6 .1)

with o4 being the apparent heat capacity defined by

~ \T J

cA(T)  = —  = iK + PL S ( T - T m)
ST (6.2)

where H  is the total enthalpy defined by (2.3). Equation (6 .1) is similar to the regular heat

conduction problem without phase change. The only difference is that the AHC is a

function of temperature. Therefore, we can extend the finite element formulation in

Chapter IV and obtain a state-space model as

T = A{T)T  + B{T)u (63)

103
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As before, the vector T contains the nodal temperatures. To compute A ,B  matrices, it is 

necessary to know (A and k  at all temperatures. These are available except at the melting 

temperature Tm. The AHC function has an integral singularity at the melting temperature. 

One way to handle this singularity is to approximate the singularity by a finite function. 

Two schemes have been proposed in the literature to handle this singularity. They are the 

linear approximation [27] and the homographic approximation [28], The linear piece-wise 

approximation of AHC is given by

c" =<
P A

PA  + P A  , PsL 
2 2e 

PA

T < T m- em
Tm- e < T < T m + e 

T > T + e
(6.4)

where e is a parameter that is selected by user. This approximation tends to actual 

singularity as £ 0 (see Figure 6.1). The homographic approximation is given by

P A  +
PsL
277

1

PA +
Elk
2 t]

(l+lr-r.l/r,)
(

T < T

1

{ \+ \T -T m\ / n y
T> Tmpt

(6.5)

This approximation is illustrated in Figure 6.2 for various t|.

Both techniques provide approximate solution to the phase change heat 

conduction problem. In this dissertation, the linear approximation is adapted, for no 

particular reason. In [28], the benefits of the homographic approximation over the linear 

approximation are summarized. The main advantage of the homographic approximation is 

the C1 continuity of the approximated cA.
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Figure 6.1 Linear approximation of AHC singularity.
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Figure 6.2. Homographic approximation of AHC singularity.
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6.2 Finite Element Implementation

The computation of the elemental integrals are made using 4-point Gauss 

quadrature as in Section 4.3. The element stiffness matrix, mass matrix and force matrix 

all have the same forms as in the case of general heat conduction problem. The main 

difference is that the material properties are temperature dependent. Further, around the 

interface regions the material properties may vary within an element.

Consider any element depicted in Figure 6.3 and the four Gauss integration points. 

The region around the quadrature point is considered solid or liquid depending on the 

temperature o f the quadrature point. The material property in the region is evaluated 

using the temperature of the quadrature points. This would yield approximate element 

matrices. A better approximation can be obtained by using higher order quadratures for 

performing integration.

6.3 Simulation of Phase Change Problem

The phase change problem has to be simulated to validate the model and verify the 

control algorithms. There are several methods to simulate (6.3). One of the simplest 

technique is the Euler method that works well for small time step At.

T(t + At) = 7X/) + At(A(T( t ) )T( t )  + B(T(t ) )u( t ) )  (g g)

The complete simulation procedure can be summarized in the following steps

(a) From the given initial temperature distribution T(t), find the temperatures at 

all nodal points.

(b) Find the matrices using the finite element formulation and the 

boundary condition u.

(c) Find T(t+At) using (6 .6).

(d) Locate the new interface location.

(e) Repeat from step (a).
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Figure 6.3. Role of integration points to determine the state of
the material. The solid or liquid state of shaded region 
is determined by the temperature of the integration point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

109

6.3.1 User-Defined Parameters

There are many choices that the modeler has to make before simulating the crystal 

growth process. Some of them are:

(a) Mesh type, mesh size, type o f interpolation function for temperature and BC

(b) Quadrature scheme, consistent or lumped matrix choice

(c) Singularity approximation method and the corresponding parameters

(d) Time integration method, time step At

The choices are usually a trade-off between accuracy and complexity o f the model or the 

computational cost. In this dissertation, choices are made to keep the model simple. 

Consequently, the model is constructed using a coarse mesh, simple interpolation 

functions constructed using 4-node quadrilateral elements. Gauss 4-point quadrature 

scheme is employed to compute the element integrals.

The choice of integration time step is dependent on several factors. With large 

time steps the simulations may become unstable, inaccurate and in the case o f phase 

change problems, some nodal points may solidify without releasing the latent heat as AHC 

does not take the peak value. This problem is termed as 'jumping of the latent heat peak' 

[29], The choice o f time integration scheme also affects the choice o f time step. In 

general, the time step has to be smaller for explicit schemes than implicit schemes for 

similar accuracy. However, the number o f computations in one time step is more with the 

implicit schemes.

6.4 Open Loop Simulation

The solidification of Lead Bromide inside a cylindrical ampoule shown in Figure

4.1 is modeled in this section. The spatial discretization o f the surface <J>=0 is done as 

before as seen in Figure 5.1. Linear approximation as given in (6.4) is used to represent 

the AHC <A. The parameter e must be chosen small so as to have a realistic
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approximation. However, choosing e small would require a small time step, a finer mesh 

and higher order Gaussian quadrature. With this in mind, e is selected as 1.0 C. The 

choice o f time step At is inter-dependent on other user-selected parameters such as the 

boundaiy and initial conditions. If the BC and the initial conditions are such that the 

temperatures are changing fast, then a smaller time step is necessary to have reasonable 

accuracy.

6 .5 Validation of Finite Element Code

The finite element code developed for simulating the heat conduction with phase 

change problem is verified by the following methods:

(a) Symmetry of temperature distribution:

The code is simulated with all initial nodal temperature at constant temperature 

below the melting point. A constant outside temperature ^  (z) == L uuu  ĉcnumi > Tm 

is applied and the transient heat transfer problem is simulated. Due to symmetry all 

temperatures in a vertical line must be the same and hence the interface shape must be 

vertical during the melting process. The finite element solution satisfied this symmetry 

condition. Similar symmetrical boundary conditions are applied and the code satisfied the 

appropriate symmetry conditions.

(b) Qualitative comparison with commercial code, FIDAP.

The simple problem in Figure 4.1 is modeled using a commercial code FDD AP and 

the currently developed code The results matched qualitatively, i.e., the transient 

responses are similar and the steady-state solution are the same. It is difficult to compare 

the transient solutions quantitatively, as the FEDAP code uses different simulation scheme, 

many local approximations to reduce computation time. However, since the solution 

produced the same steady-state solution and similar transient response, we conclude that 

the code is working correctly.
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(c) Comparison with steady-state analytical solution of heat-conduction equation

The steady-state solution of the heat conduction equation with no phase change 

can be found analytically for simple outside temperatures. These are verified with the 

steady-state solution provided with the present finite element code.

6.6 Summary

This chapter deals with the modeling of heat conduction problem with phase 

change. The AHC formulation is used to obtain a governing equation similar to the heat 

conduction problem. The AHC function has an integrable singularity at the melting 

temperature. The linear approximation is used to handle this singularity. A non-linear 

state-space model is obtained using the finite element procedure. This model is simulated 

using the Euler method.
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CHAPTER VII 

INTERFACE SHAPE CONTROL

As seen in the earlier chapters, the crystal growth process is governed by a non­

linear state-space equation. One of the main objectives of this dissertation is to control the 

shape o f the interface during crystal growth. The crystal growth dynamics is described in 

terms o f a non-linear state-space model. The task of designing a controller (linear or non­

liner) for a general non-linear system is a very difficult proposition. A standard approach 

is to linearize the non-linear system and utilize the linear control design procedures. This 

would result in finding a linear controller. Chapters IV and V contain a general method to 

model and control the linear heat-conduction problem. This chapter utilizes similar 

techniques to control the interface shape after linearizing the non-linear crystal growth 

model.

7.1 Linearization

Non-linearity of the crystal growth model is due to the movement o f the interface 

surface. The interface movement rate for a typical crystal growth process is rather low 

and is usually in the range o f 5 to 10 cm/day. Therefore, a linearized model is adequate 

for control design purposes.

Suppose the interface is required to move from an initial position "a" to position 

"b". This corresponds to the transition of temperature distribution from T^(r,z) to T}y(r,z). 

For this temperature distribution transition, the linearization of the system can be 

performed in one of the following ways:

112
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(a) Find the state-space model corresponding to the initial state Ta and fix it as the model 

representing the system. Design a single linear controller using this model.

(b) Use the final state 7# to find the state-space matrices and design a linear controller 

using the corresponding matrices.

(c) State-space model evaluated at any intermediate temperature, Ta< T < T b may be used 

to design the controller.

This dissertation utilizes (a) for control design purposes. The main justification is 

that in a practical situation, only Ta is known. Even though the required Tb is known, it 

is possible that this temperature distribution cannot be achieved using the existing 

actuators (heaters). The same is true for any intermediate temperature. Therefore, rather 

than using an unachievable model for control purposes, it is practical to use the technique 

proposed in (a). If the jump from one Ta to 7^ is large so that one single model may not 

adequately represent the system, two controllers can be designed, or as many controllers 

as may be needed.

7.2 Control Objective and Design Framework

The control objective can be stated as follows : "Find the boundary condition, i.e., 

the temperature distribution outside the ampoule surface, such that the desired interface 

shape is established during crystal growth." As seen in Chapter V, the set o f achievable 

interface shapes or temperature distributions in the steady-state is limited by the position 

and the number of actuators. This physical restriction would require a kind of pre-filter 

that would transform all unachievable requests of interface shape or temperature 

distribution to something that is achievable. This will be explained in a later section.

As in the linear heat conduction control, the measurements would affect the design 

and implementation of control algorithms. Also, in addition to setting a desired interface 

shape, it is necessary to grow crystal at a required rate which amounts to changing the
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location of the desired interface shape. The control design procedure for each situation is

different. To facilitate a good understanding, the control design problem is broken up into

divisions based on the measurements and control objective as follows:

i. All states are measurable which amounts to the availability of all nodal temperatures.

(a) Control design is to establish a desired interface shape at a desired location.

(b) Control design is to establish and move a desired interface shape at a given rate.

ii. Only a few states are measured

(a) Control design is to establish a desired interface shape at a desired location.

(b) Control design is to establish and move a desired interface shape at a given rate.

7.3 Control Design Procedures

7.3.1 State-Feedback Shape Control of Interface at a Desired Location

7.3.1.1 Controller Design

In order to be able to design a state feedback controller as Linear Quadratic 

Regulator (LQR), it is necessary that all states are controllable. However, as seen in the 

linear heat conduction problem, many of the states may be weakly or totally 

uncontrollable. In this situation, one may have to obtain at least a minimum state-space 

realization o f the linearized system. To avoid numerical problems, it may also be 

necessary to obtain a reduced-order model by eliminating weakly controllable states. For 

the crystal growth system considered in this dissertation, the original system is minimum 

and no numerical difficulties have been encountered while designing the controller. 

Therefore, in this section we design the controller using the linearized state-space model 

directly. However, if this is not feasible, the design techniques proposed in Section 7.4 

can be used to determine the controller.

A linearized state-space model is found by performing open-loop simulation 

experiments. The boundary condition during the open-loop simulation is picked so that
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steady-state interface is approximately in the neighborhood of the desired interface 

location. Note, it is not necessary for the steady-state interface to have the desired shape. 

This choice would ensure that the model used for designing the controller is "close" to the 

actual model in the steady state. One choice for the boundary condition is to use a 

constant temperature gradient as in Figure 7.1, with the boundary condition temperature 

at the desired interface location being equal to the melting temperature Tm. The gradient 

is chosen to be the same as the desired gradient in the material. This would ensure, that 

the steady-state interface location obtained through open-loop simulation is in the same 

location as the desired interface location. The model corresponding to the steady-state is 

used as the linearized model of the crystal growth process and is given as

T = A T  + + B2u2 ^7 2)

As before, the control law to establish a non-zero steady state is given as

m, = KsT+ ub ( j 2 )

The state-feedback gain Ks is used to shape the transient dynamics and the bias input wj is 

used to establish non-zero references. The state-feedback gain is found as a LQR and is 

found using a formula similar to (5.15).

To determine the bias input, it is necessary to the know the desired nodal 

temperatures. However, the control objective is to establish a desired solid-liquid 

interface shape in the steady-state. One can find several temperature distribution that 

would setup the desired steady-state interface shape. The control designer selects the 

initial desired temperature distribution and through Finite Element Approximation, the 

appropriate desired nodal temperatures can be found as in Figure 7.2.

A shortcoming of this technique is that the success of the control is at the hands of 

the designer. Almost always, the desired temperatures picked by the designer
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cannot be achieved by any bias input. The condition for existence of a bias input in the 

case o f the linear heat conduction problem has been stated and proved in Chapter V. 

Since, we are using a linearized model, the same theorem can be "loosely" applied to the 

crystal growth problem with the understanding that the results are only approximate. 

Therefore, we can use the designer selected nodal temperatures and minimize an objective 

function in (5.42) (stated below for clarity)

where Td is the closest temperature distribution to the original designer-selected reference 

Td that can be achieved and W is a positive definite weighting matrix. The minimization 

procedure can be seen in Proposition 5 of Section 5.5. The approach now is to request Td 

as the reference temperature from the control system as shown in Figure 7.2.

7.3.1.2 Simulation Result

In this section, a controller is designed to establish a flat, and a convex interface 

shape at z=0.02 m. The material properties used for simulation are those of Lead Bromide 

and are given as

Liquid : p = 6675.0 kg / m 3 ,Cp = 230.0 J /  kg C , K= 0.26 W / m C 

Solid : p = 6675.0k g / m3 , Cp = 326.0 J / k g C , K =  0.26W / m C

Latent Heat, L = 51650.0 J/kg Melting Point, Tm = 373.15 C 

Convection Heat Transfer Coefficient, h = 100 W / m2 C 

The material is in a cylindrical ampoule (not considered in the model) as shown in Figure 

4.1. The enthalpy formulation is employed as in Chapter VI and a non-linear state-space 

model is obtained after discretizing the domain as in Figure 7.3. The model has 66 states 

with 11 inputs. We assume all the 11 inputs can be manipulated as desired. In the event

this is not feasible, some of the 11 inputs become exogenous inputs that cannot be altered
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independently. This would affect the controllability of the system. We also assume that 

all the states can be measured in this section.

To get a linearized model with the interface around z=0.02m, a gradient is applied 

as in Figure 7.1 with the temperature at z=0.02 being 373.15, the melting point o f Lead 

Bromide. The system is simulated until a steady-state is reached. The interface shape in 

the steady-state can be seen in Figure 7.3. The system matrices corresponding to this 

system is used as the "Linearized Model" of the crystal growth system. An insight into the 

dynamics of the linearized model can be obtained by computing the eigenvalues, which are 

given in Table 7.1.

Before designing a state-feedback controller, we have to ensure if the system is 

controllable. A judgment on the controllability can be obtained by computing the Hankel 

Singular Values as in Chapter V. From the Hankel singular value plots, we conclude that 

the system is completely controllable and therefore a state-feedback controller can be 

computed. The state-feedback control gain Ks is computed as linear quadratic gain with 

the cost Q = 5 /66, where In is n  th order Identity matrix and R = I jj . The cost is 

chosen in such a way so as to have a reasonable transient response as in Chapter V. The 

eigenvalues o f the closed-loop system are given in Table 7.2. Note, none of the 

eigenvalues are complex; therefore; at least the linearized closed-system will have no 

overshoot if the system is minimum-phase.

The importance of feedback can be seen by comparing the singular values o f the 

open-loop and the closed-loop system. The singular values for the open-loop and the 

closed-loop system at various frequencies are plotted in Figure 7.4. It can be observed 

that closed-loop system has a higher band-width than the open-loop system. This is one of 

the advantages of feedback. Under a different design scheme, feedback can be used to 

achieve stability and performance in presence of uncertainties. This approach is not taken 

in this dissertation and will be considered as a part of the future work.
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Table 7.1 Open Loop System Eigenvalues

-0.0060 -0.0061 -0.0064 -0.0068 -0.0073 -0.0078 -0.0084 -0.0089 -0.0093 -0.0095 -0.0096

-0.0185 -0.0189 -0.0199 -0.0216 -0.0237 -0.0260 -0.0283 -0.0304 -0.0320 -0.0331 -0.0331

-0.0334 -0.0342 -0.0376 -0.0427 -0.0490 -0.0492 -0.0510 -0.0564 -0.0569 -0.0636 -0.0646

-0.0660 -0.0663 -0.0674 -0.0693 -0.0701 -0.0752 -0.0752 -0.0774 -0.0782 -0.0785 -0.0796

-0.0871 -0.0900 -0.0923 -0.1020 -0.1026 -0.1103 -0.1139 -0.1186 -0.1229 -0.1287 -0.1303

-0.1307 -0.1352 -0.1503 -0.1503 -0.1622 -0.1683 -0.1698 -0.1725 -0.1826 -0.1918 -0.1950

Table 7.2. Closed Loop System Eigenvalues

-0.0114 -0.0115 -0.0116 -0.0120 -0.0125 -0.0134 -0.0145 -0.0156 -0.0166 -0.0173 -0.0175

-0.0217 -0.0222 -0.0238 -0.0263 -0.0295 -0.0329 -0.0362 -0.0362 -0.0374 -0.0394 -0.0414

-0.0416 -0.0434 -0.0438 -0.0471 -0.0510 -0.0531 -0.0546 -0.0593 -0.0629 -0.0657 -0.0682

-0.0688 -0.0712 -0.0758 -0.0788 -0.0798 -0.0808 -0.0834 -0.0846 -0.0876 -0.0883 -0.0897

-0.0941 -0.0946 -0.1026 -0.1073 -0.1126 -0.1192 -0.1193 -0.1288 -0.1348 -0.1351 -0.1361

-0.1368 -0.1512 -0.1600 -0.1632 -0.1710 -0.1736 -0.1850 -0.2076 -0.2255 -0.2370 -0.2405
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Figure 7.4 Singular value plot for open-loop and closed-loop systems.
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The linearized model and the state-feedback gain are not dependent on the desired 

interface shape but on the interface location. However, the bias input will be dependent 

on the desired shape. At first, a flat interface is desired at z=0.02. As in Figure 7.2, the 

designer has to select the equivalent temperature distribution and in this case this 

distribution is chosen as

where Tm is the melting point o f Lead Bromide (373.15 C), zinterj-ace is the location of the 

desired interface (0.02 m), and Tgfacnent is desired temperature gradient (10 C/cm). 

Note, the desired temperature distribution is not a function o f r for flat interface. The 

corresponding desired nodal temperatures for the temperature distribution in (7.4) are 

found using the finite element approximation. Now, the task is to find a bias input so that 

the performance index in (7.3) is minimized. The weighting matrix IF has to be selected 

and as a first shot, W= Ifo  is attempted. Theoretically, we would like to apply more 

emphasis on the nodes near the interface, as we will see in the convex interface shape case. 

The achievable nodal temperature corresponding to this choice is calculated as

The matrix F  in the above equation is the linearized closed loop system given by

Based on the linearized model, the steady-temperature distribution and steady-state 

outside temperate are shown in Figures 7.5 and 7.6.

Nodes numbered 16 to 24 in Figure 7.3 are the nodes around the interface region. 

Based on visual inspection, there is a good match between the desired and the actual

T (r,z) = Tm+(.z — z  y‘'m l erf ace )  gradientĝradient = 3 73 + (Z -  0. 02) • 10.0 (7.4)

(7.5)

where the parameter 0 is given by

(7.6)

F  = A + B,K, (7.7)
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temperatures. The crystal growth system is simulated with this controller as shown in 

Figure 7.7. The initial conditions are such that all nodes are at 370 (entire material is 

solid). Even though our linearized model does not exactly represent the model in the 

initial state, the controller designed using this model is able to establish the desired 

temperature distribution. The desired and the actual nodal temperatures are plotted in 

Figure 7.8 and the requested outside temperature profiles are plotted in Figure 7.9. The 

steady-state interface shape is plotted in Figure 7.10 and the contour plot of the steady- 

state temperature distribution is given in Figure 7.11. The 2-norm of the error defined as

where T  and Td are the nodal temperatures and the desired nodal temperatures. The 2- 

norm of the error is plotted for various times and is shown in Figure 7.12. Note that the 

norm goes down to zero showing the effectiveness of the controller. To verify if there are 

no overshoots, we plot the interface location for one particular r=0 (along the axi- 

symmetric axis) with respect to time as in Figure 7.13. From the figure, we can conclude 

that there are no overshoots at least at for this r.

Having established a flat interface shape, we attempt to establish a convex 

interface with the base of the convex interface at z=0.02. The convex shape is described 

in terms of a sine function as

where l(r) is the interface z-position at radial position r, R is the radius of the cylinder and 

h is the convexity parameter. The linearized model and the state-feedback gain Ks are the 

kept the same as the flat interface case as there are no obvious better choices. The desired 

temperature distribution that would achieve a convex interface shape is selected as
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Figure 7.5. Desired nodal temperatures Td and achievable nodal temperatures Td based 

on the linearized state-space model.
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Figure 7.6. Steady-state inputs for establishing a flat interface at 7=0.02.
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Figure 7.8. Achievable nodal temperatures Td and actual steady-state nodal 

temperatures Abased on the non-linear state-space model.

Total sim ulation tim e = 32 mins
0.10 Steady-State 

Temp. Profile

0.08

0.06

0.04

0.02 Initial Temp. Profile

0.00

200. 300. 400. 500. 600. 700. 800. 900

Temperature

Steady-state inputs (ty, ~ K ST„) at different z-Iocations.
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Figure 7.9. Temperature profiles requested by the controller as a function of time.
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Figure 7.10 Steady-state interface shape and the corresponding steady-state boundary temperature for 
achieving a flat interface at z=0.02. Note, in this simulation, it is assumed that the 
temperature at all nodes are measured.
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Figure 7.11 Contour plot of temperature distribution in the steady-state while 

establishing a flat interface at z=0 .02.
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Figure 7.12 Plot o f 2-norm of tracking error as a function of time.
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Figure 7.13 Interface height at the surface r=0.0 as a function of time. Note that there 

is no overshoot in the interface position at least for this particular plane, i.e., 

r=0.
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T(r, z ) - T m+ (z I(f))Tgmdienl (711)

The bias input is calculated as before by minimizing the cost in (7.3) with the initial choice 

of IT being I66. The steady-temperature distribution and steady-state outside temperature 

based on the linearized model are shown in Figures 7.14 and 7.15. Note, that the resulting 

interface shape is not close to what we desired. This is mainly due to poor choice of 

weights. The minimization only provides us a least-square solution and the weight fV=^66 

does not represent our objective to have the desired shape. Therefore, we need to place 

more importance around the interface region. Initially, only the nodes 16-24 are weighted 

more heavily than others. The optimized solution did not produce a crisp interface. 

Actually there were two interfaces (at least based on the model). After some iteration, the 

weights W  as given below produced reasonable interface shape based on the linearized 

model.

0 0 0 0
0 2016 0 0 0
0 0 2000/ 12 0 0
0 0 0 20016 0
0 0 0 0

W =

(7.12)

The steady state distribution and outside temperature based on this set of weights are 

shown in Figures 7.16 and 7.17.

The crystal growth system for this choice of bias input is simulated with the initial 

nodal temperatures being 370 C (same as before). Again, this controller is able to 

establish the desired temperature distribution. The actual and desired nodal temperatures 

are plotted in Figure 7.18 and the corresponding outside temperatures requested by the 

controller are plotted as function of time in Figure 7.19. The steady-state interface shape 

is plotted in Figure 7.20 and the contour plot at this steady-state is shown in Figure 7.21.
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Figure 7.14. Desired nodal temperatures 7^ and achievable nodal temperatures Td based 

on the linearized state-space model with the weight W=I66
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Figure 7.15. Steady-state inputs for establishing a convex interface at z=0.02 based on

w = i 66.
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Figure 7.16. Desired nodal temperatures 7^ and achievable nodal temperatures Td based 

on the linearized state-space model for the weight W in Equation (7.12).
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Figure 7.17. Steady-state inputs for establishing a convex interface at 2=0.02 based on 

W  in Equation (7.12).
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Figure 7.18. Achievable nodal temperatures Td and actual steady-state nodal 

temperatures T  based on the non-linear state-space model.
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Figure 7.19. Temperature profiles requested by the controller as a function of time.
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Figure 7.20 Steady-state interface shape and the corresponding steady-state boundary temperature for 
achieving a convex interface at 2=0 .02 . Note, in this simulation, it is assumed that the 

temperature at all nodes are measured. ~
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Figure 7.21 Contour plot o f temperature distribution in the steady-state while 

establishing a convex interface at z=0 .02 .
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Figure 7.22 Plot of 2-norm of tracking error as a function of time.
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Figure 7.23 Interface height at the surface r=0.0 as a function of time.
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The 2-norm of the error is shown in Figure 7.22 and the interface position at the plane 

r=0 for various time is shown in Figure 7.23.

Through a different approach Young [89] has predicted the rather complicated 

outside temperature to be one of the outside temperature that would establish a convex 

interface shape. The details behind this approach is beyond the scope of this dissertation.

7.3.2 State-Feedback Control to Grow Crystal at a Desired Rate

7.3.2.1 Controller Design

In the last section, a state-feedback controller is designed to establish a desired 

interface shape at a desired location. Here in this section, we would like to design a 

controller that would move the interface at a desired rate preserving the desired shape of 

the interface. Some basic ideas are derived on designing this controller by observing how 

crystals are grown currently. The crystals are grown by moving the ampoule; this can also 

be accomplished by moving the gradient at a constant rate. Theoretically, we can design 

the steady-state outside temperature and translate it across the material. However, we are 

not using the model to determine the boundary conditions and this can be argued to be an 

open-loop solution to the problem contrary to the main objective of this dissertation.

The main idea to the design of the controller is to move the desired temperature 

distribution instead of moving the temperature gradient. If  the controller can find a bias 

input that would achieve the moving desired temperature at all times, then we achieve our 

objective of this section. Intuitively, we expect the translated temperature gradient to be 

achieved by a translated bias input and therefore, we are justified in adapting this strategy. 

Mathematically, the desired temperature requested from the controller can be formally 

stated as

otherwise
V (z -  v/) > 0

(7.13)
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where v is the rate of crystal growth, t is the time, and Tg is the desired gradient in the 

solid region. Although, at any time t=x, the desired temperature gradient requested from 

the controller Td{r ,z ,i)  is not feasible. However, the manner in which we find the bias 

input would automatically provide a least-square solution with W=I.

7.3.2.2 Simulation

As in Section 7.3.1.2, we try to establish a flat and a convex interface at z=0.02m 

and then move it a rate o f 1 cm/hr. We used the same linearized model, the state-feedback 

gain and the bias input as in Section 7.3.1.2, where a flat interface is established at z=0.02. 

This would establish a flat interface at z=0.02 as before. Once a steady-state is reached, 

we would like to grow the crystal at a rate of 1 cm/hr. Changing the desired temperature 

as in (7.13) would not change the linearized model or the state-feedback gain, rather 

would change only the bias input. The bias input is computed using Td as before and is 

given by

u„=-{g,T FT,
; (7.14)

In the actual implementation, the <j> matrix is computed only once at the beginning as <p

does not change with time. Now, the bias input at any time / is calculated as a function of

the achievable temperature as

ut (0  = QTd (f) (7 15)

with Td(t)  being the desired nodal temperature at time t calculated by approximating the 

desired distribution in (7.13). Simulation results are provided in Figures 7.24 for the flat 

interface case. The 2-norm of the tracking error is plotted in Figure 7.25. It can be 

observed that as soon as the interface moves from the initial position z=0 .02, the norm of 

tracking error increases. This is due to the fact that the bias inputs are determined from 

the model that corresponded to z=0.02. If the 2-norm error is too big, the bias input has
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to be re-designed around the new z. The actual and the desired interface height is plotted 

as a function o f time in Figure 7.26 and from this figure it can be seen that the controller is 

able to track the desired interface height with no overshoot.

Similar results are shown for the convex interface case are shown in Figure 7.27, 

7.28 and 7.29. In general for this material, the controller based on a single linearized 

model is able to perform reasonably. Also, note from the Figure 7.27 that the behavior of 

the requested outside temperature is very close to the case where one would simply 

translate the outside temperature distribution.

7.3.3 Observer Based State-Feedback Control of Interface at a Desired Location

In the entire previous section, we assumed that all states are measurable. In almost 

any practical situation, only a few o f the states can be actually measured. This section is 

devoted to the implementation of the state-feedback controller in the presence o f partial 

measurements.

7.3.3.1 Controller and State-Estimator Design

A linearized state-space model is found as in the previous section and the resulting

state-space equation is given in (7.1). Any set of measurements^ can be found as a linear

combination of the states as given by

y  = CT (716)

Note that in the presence of Dirichlet boundary condition there is an additional input 

dependence. The methods developed in this section can be readily extended to this 

situation. The control strategy for establishing the desired interface shape is given as

«i = KST +Ub, (7.17)

where T  is an estimate of the nodal temperatures T. Note that the control strategy is 

similar to the state-feedback case as in (7.2) with the exception that the estimated states 

are used instead o f the actual states.
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Figure 7.24 Steady-state interface shape and the corresponding steady-state boundary temperature for 

achieving a flat interface and moving it at a rate of 1 cm /hr.
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Figure 7.25 Plot of 2-norm of tracking error as a function of time. Note the tracking 

error begins to increase with the translation of interface.
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Figure 7.26 Interface height at the surface r=0.0 as a function o f time. Note that there 

is no overshoot in the interface position at least for this particular plane, i.e., 

r-0 .
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Figure 7.28 Plot o f 2-norm of tracking error as a function of time for the convex 

interface shape case.
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Figure 7.29 Interface height at the surface r=0.0 as a function o f time
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The pair (^ ’^ )  in (7.1) and (7.16) must be observable to compute an estimate of 

the nodal temperatures and the must be controllable for the existence o f a state-

feedback control. In the previous section, we assumed the system is controllable and if 

this is not so, we can use the techniques in this section to design a controller. The basic 

idea is to compute a reduced-order model that is completely controllable and observable 

by eliminating all uncontrollable and unobservable modes. As in Chapter V, the balanced 

truncation method [78] is used to determine the reduced order model. The order o f the 

reduced order model can be found by plotting the Hankel singular values of the system.

The £th reduced order after eliminating (n-k) weakest controllable\observable modes is 

given by

t r  = ArTr + B[u, + B [ u 2

y  = y r =CrTr ' (7 ]8)

where Tr e 9?* ,A r e SRkxk, and all other matrices are o f appropriate dimension. Note that 

the appropriate matrices can be found from the formulas in Section 5.2.1 and are stated 

here for convenience

T r = S TLMgT (7.19)

A '= S TLMgASRMg 

B[ = S TLbigBx B i= Sl„ igB2

Cr =CSRMg (7.20)

where ^ L-b's > are matrices of dimension n by k  and are computed using the 

orthonormal basis of the left and right eigenspaces associated with the k largest 

eigenvalues o f the matrix The matrices Wc and JV0 are the controllability and the

observability Grammians of the full order model.
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The control strategy in (7.17) needs to be modified as all states are not controllable 

and observable. This is done by feeding back the estimated states o f the reduced-order 

model as

u\ = K J r + ub (7.21)

The reduced order state-feedback gain is found as a LQR and the state-estimate o f Tr is 

found by using an observer. The observer dynamics is governed by an equation similar to

(5.20) and is given by

Tr = Arr  + + B ' u2 + L ( y - c f r) ̂  (7 22)

where L  is the observer gain and is found as an LQE by a formula similar to (5.21).

As before, the designer selects the nodal temperature that would set up the desired 

interface shape. The objective function in (7.3) can be minimized to find the achievable 

nodal temperatures. There are basically two different ways to find the bias input. In this 

dissertation, we find the bias input based on the model and use no feedback to adjust for 

modeling error in the bias input. Therefore, we can directly use the bias inputs found in 

the state-feedback section. This would essentially set up the same steady-state interface 

shape as the state-feedback case. Although, this approach solves the reduced- 

measurement problem, it provides no new results. Another problem with this approach is 

that it restricts the bias input to be determined in an open-loop fashion only. Closed-loop 

bias input determination through techniques such as pseudo integral control approach [87] 

cannot be implemented with this choice. However, if we determine the bias-input using 

the "reduced-order model", pseudo integral control approach can be implemented. In the 

rest o f this section, we attempt to design bias input using reduced-order model only.

Figure 7.30 shows the general method to find the bias input using the reduced- 

order model. The desired nodal temperature Tj specified by the designer is transformed to 

desired reduced order state through the following transformation
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(7.23)

Just as in the state-feedback case, it is possible that the reduced state requested by the user 

cannot be achieved by any bias input ujy. Therefore, as before we cast an optimization 

framework and minimize an objective function similar to the one in (7.3)

where IP  is a user selected weight matrix. The states of the reduced-order state-space 

model have no physical meaning (rather a linear combination o f nodal temperatures) and 

therefore, it is difficult to pick W. We propose a transformation that would transform 

weights used in the full order state-feedback case (Section 7.3.1.1) as

The approach now is to request the Td corresponding to the minimum J  as the desired 

temperature distribution as in Figure 7.30.

1.23.2 Simulation Results

A state-feedback implemented using observer is designed establishing a flat and a 

convex interface. The linearized state-space model is the same as used in Section 7.3.1.2 . 

This model has 66 states with 11 inputs. Here, we assume only the ampoule surface is 

measured. Therefore, the system has 11 outputs measured at the 11 nodal points on the 

ampoule surface. The Hankel singular values are computed for this system and 11 states 

are found to be weakly observable\controllable. Therefore, a 55th order reduced-order 

model is obtained using the balanced truncation technique. A state-feedback control gain 

is computed as linear quadratic regulator with the weighting matrices Q and R  chosen as

Q ~ 5SR.bigSR.big > ^  = I \i (7.26)

This choice is made in an effort to minimize a similar cost as the full order state-feedback. 

This approach is expected to yield a similar transient response as the full order case. The

(7.24)

(7.25)
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observer gain L is selected as a linear quadratic estimator and is computed with a cost

chosen as

Qo ~ 10 h S ’ Ro ~ h l - (7.27)

The cost is chosen in such a way that the estimator dynamics is much faster than that of 

the actual system. Again, as before, the closed-loop and open-loop system are compared 

by plotting the corresponding singular values as shown in Figure 7.31. As before, 

feedback increased the band-width of the system.

The bias input is dependent on the desired interface shape. As before, we try to 

implement a flat interface at z=0.02 except that in this case, only a few measurements are 

available for feedback. The equivalent temperature distribution for establishing the flat 

interface is chosen as in (7.4). The weighting matrix IF is selected to be same as before, 

i.e., W = I66. The corresponding W r is computed using the transformation in (7.25). The
<Tir

achievable reduced-order state-vector 1d for this weight choice is calculated using a 

relation similar to (7.5) and for this case is given as

The steady-state temperature distribution and steady-state outside temperature based on 

the reduced-order linearized model are shown in Figures 7.32 and 7.33.

The implementation of the observer-based state-feedback controller is shown in 

Figure 7.34. There are some difficulties with choosing a single time-step for both the non-

(7.28)

where

(7.29)

with P  is the linearized reduced order closed-loop system given by 

F r = A r + B[Ks (7.30)
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Figure 7.32. Desired nodal temperatures 7^ and achievable nodal temperatures Td based

on the linearized reduced order state-space model.
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linear crystal growth system and the observer. The observer has a faster dynamics due to 

the design and therefore, needs a smaller time step. One way to handle this difficulty is to 

keep the time-step of the non-linear system to be an integer multiple of the estimator. This 

way, the estimator can go through a set of time step before the non-linear system can go 

through a single time step. In the simulations presented in this Section, the time-step for 

the estimator is selected as 0.05 seconds and that o f the non-linear system to be 1.0 sec (a 

factor of 20).

The crystal growth system is simulated with this observer based state-feedback 

controller. All the initial nodal temperatures are assumed to be at 370 C. The actual and 

the achievable temperature distributions are plotted in Figure 7.35 and the requested 

temperature profiles are plotted in Figure 7.36. Note, the input request during start-up is 

very high during start-up. This is because of the initial choice for the states in the state- 

estimator. Ideally, the feedback controller must be started after the state-estimator 

converges. This is very essential in a practical implementation. The steady-state interface 

shape is plotted in Figures 7.37. The 2-norm of the error in the nodal temperature as 

given by (7.8) and (7.9) are plotted in Figure 7.38. To see, if there is any overshoot in 

the establishment of the interface, we plot the interface height at r=0 as a function of time 

as in Figure 7.39. Again due to poor initial condition for the state estimator, the control 

overshoots in the very beginning. However, this can be avoided by switching to closed- 

loop control after the estimator converges. The 2-norm of the estimator error defined as

e=r-r

is plotted in Figure 7.40. Note that the estimator error 2-norm goes down to zero.
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Figure 7.35. Achievable nodal temperatures Td and actual steady-state nodal 

temperatures T based on the non-linear state-space model. 
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Figure 7.38 Plot of 2-norm of tracking error as a function of time.
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Figure 7.39 Interface height at the surface r=0.0 as a function of time. Note that there 

is undershoot/overshoot during startup. Over-shoot does not occur once 

the estimator converges.
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Figure 7.40. Plot of estimator error 2-norm as a function of time.
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A similar control design procedure is followed to establish a convex interface 

shape. The desired nodal temperature Td , and the weight W are selected as in equation 

(7.11) and (7.12). In order to make the presentation concise only the steady state 

interface shape and the requested boundary condition are plotted in Figure 7.41.

7.3.4 Observer Based State-Feedback Control to Grow Crystal at a Desired Rate

7.3.4.1 Controller Design

The strategy developed in Section 7.3.2 is used to translate the interface. As 

before, we translate the achievable nodal temperatures. To get the achievable nodal 

temperature from the reduced-order achievable states, we use the following 

transformation

T =  9 Tr1d R.big d 22)

From the achievable nodal temperature we can find the achievable temperature 

distribution using finite element approximation. Now the translated achievable

temperature distribution is found using Equation (7.13) and the corresponding achievable 

reduced states are computed using the following equation

t { t ) = S l bigTd (t)  ( ? 3 3 )

As before, the bias input to establish this achievable reduced-order state is determined 

using Equation (7.28).

7.3.4.2 Simulation

This section contains simulation o f crystal growth system operating with the 

observer-based controller. In the first case, we would like to grow crystal at a rate of 

1 cm/hr with the interface being flat during the growth period. In the second case, we 

attempt to establish a convex interface and grow it at the same rate 1 cm/hr. For both
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cases, we use the same linearized model, same reduced-order state-feedback controller 

and observer as in the Section 7.3.2.2.

Initially, we apply the bias input used in Section 7.3.2 .2 to establish a flat interface 

at z=0.02. This would establish the same interface as in Figure 7.37 in the steady-state. 

Once the steady-state is reached, the interface is translated by changing the achievable 

temperature distribution. The bias input is calculated as

The achievable, actual interface shape and the corresponding temperature profiles at some 

specific times are plotted in Figure 7.42. The 2-norm of tracking error, the interface 

height at r=0 surface and estimator error are plotted in Figures 7.43, 7.44, 7.45.

The procedure is applied for the convex interface shape case and the achievable, 

actual and the requested temperature profiles are plotted for specific times in 7.46.

7.4 Comments and Conclusions

This chapter provided simulation results to demonstrate the ability to control the 

solid-liquid interface shape during crystal growth by manipulating the boundary 

temperature. The boundary temperature is essentially found using a linearized model of 

the furnace. Depending on the number o f on-line measurements, either the state-feedback 

or the observer based controller can be used. The designer translates the requirement of a 

desired interface shape into a requirement of a desired temperature distribution. Using 

some of the theorems developed in Chapter V, we find an achievable distribution that is 

"close" to the desired temperature distribution. The designer can also provide a weight

(7.34)
T rThe translated U can be found using (7.33) and therefore the bias input at any time t can 

be calculated as

«*(') = W ( 0 (7.35)
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matrix to lay more emphasis on certain regions than others. The actual interface shape is 

very much dependent on the choice of the weight matrix. Translation o f interface is 

achieved by translating the desired temperature distribution. From the simulation results, 

it is evident that this approach yielded the desired interface shape during crystal growth.
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Figure 7.43 Plot of 2-norm of tracking error as a function of time. •

0.10

0 .08

0 .0 7

0 .05

0.03

0.02

0.00 

0 .

Figure 7.44 Interface height at the surface r=0.0 as a function of time. Note that there 

is undershoot/overshoot during startup. Over-shoot does not occur once 

the estimator converges.
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Figure 7.45 Plot of estimator error 2-norm as a function of time during crystal. Note 

that the error asymptotically decreases to zero.
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS

This dissertation deals with the problem of controlling the solid-liquid interface 

shape during solidification of molten material inside an ampoule. The necessary boundary 

conditions that would achieve the desired interface shape and translation rate is found 

using the developments in the "Controls" area.

The finite element method is used to approximate the governing PDE found using 

apparent heat capacity formulation by a finite number of ODEs. A general methodology is 

proposed to obtain a state-space model of the heat-conduction system by appropriately 

parametrizing the boundary conditions. This procedure is used to obtain a state-space 

model of the heat-conduction system.

The state-space model is used to design a controller to improve the transient 

response and to establish arbitrary temperature distributions inside the material by altering 

the parameterized boundary conditions. The standard LQR / LQG procedure is used to 

design the controller. The tracking of reference temperatures is achieved through the bias 

input determined using the model. A set of necessary and sufficient conditions are derived 

to characterize the set of all achievable temperature distributions inside the material in the 

steady-state.

The heat conduction problem with no phase change is initially considered to gain 

insights into the modeling and control aspects. The reduced-order lumped state-space 

model obtained by balanced truncation method is used to design controllers for four 

different sets o f measurements. In each case, a state-feedback controller is designed as 

LQR and if there is a need, an observer is designed through the LQG design procedure.

166
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The robustness of the controllers are analyzed by finding the multi-variable gain 

and phase margins. As reported in the literature, it is found that there are no guaranteed 

margins for the LQG controllers and an arbitrary design may produce unstable controllers. 

It is proposed to use the LTR technique to design stable controllers that have the 

robustness properties o f a standard LQR based controllers. In the current design, the bias 

input is found using the model and the output measurements are not utilized in 

determining them. Therefore, we propose to use a generalized version of integral-control 

that would guarantee zero steady-state error at all measurement locations.

The heat-conduction with phase change problem is treated in a similar fashion as 

the linear heat conduction fashion. The control problem is divided into four main design 

problems: establishing a desired interface shape assuming all nodal temperatures are 

measured, moving the interface at desired rate while maintaining the desired interface 

shape when temperatures at all nodes are measured, establishing a desired interface when 

only a partial set o f temperatures are measured, moving the interface at a desired rate 

when only a few nodal temperatures are measured. In each of the four control design 

problems, two sets of desired interface shape are considered: flat interface, convex 

interface.

Initially, a linearized model to represent the dynamics of the interface shape during 

crystal growth is obtained by performing open-loop simulations using the non-linear FE 

model with appropriate boundary conditions. The linearized model is used to design the 

state-feedback gain by minimizing appropriately chosen costs. To determine the bias 

inputs, the designer is required to specify a temperature distribution that would represent 

the desired interface shape reasonably. The theorems developed in Chapter V are used to 

check if this desired temperature distribution can be achieved by any boundary 

temperatures. As observed during design exercises, it is very rare that the specified 

temperature distribution can be established by a boundary temperature. Therefore, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

168

desired temperature distribution is achieved in a weighted least-squares sense by finding 

appropriate control inputs. The weights are chosen so that temperatures around the 

interface region are given more emphasis than other locations. It is also observed that the 

success o f achieving a desired interface shape is dependent on the choice of weight, 

especially for the convex interface shape.

The desired interface is translated by moving the desired temperature at all times. 

The bias input is determined in a similar fashion as in the case of simply establishing the 

interface at a specific location except that the translated desired temperatures are used 

instead of the desired temperatures. This strategy successfully moved the interface at the 

desired rate.

In the situation where only a few nodal temperatures are measured, an estimator is 

designed to reconstruct the nodal temperatures from the measured temperatures. The 

estimated nodal temperatures are used to implement the state-feedback controller. The 

linearized model is selected to be the same as the state-feedback case (all nodal 

temperature measured). However, from the Hankel singular value plot, it is found that 

some states are weakly controlIable\observable. Hence a reduced-order model is found by 

eliminating the weakly controllable\observabIe modes. The reduced-order model is used 

to design the controller. The control design with the reduced-order model is very similar 

to that of the state-feedback case. Simulation results showed that the observer based 

state-feedback controller has similar performance except during initial start-up. A similar 

result is obtained while moving the interface in the presence of the partial measurements.

8 .1 Future Directions

8.1.1 Modeling Aspects

The current model is obtained for a very simplified growth conditions. For 

example, the model has no ampoule built into it. It is reported in literature [42] that the
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ampoule plays an important role in determining the radial temperature distribution. So 

leaving the ampoule out of the model will change the dynamics of the interface shape 

during crystal growth. Therefore, incorporating the ampoule into the model will bring the 

model closer to reality.

The current model considers heat-conduction as the sole governing phenomena to 

determine the shape o f the interface. There are other heat-transfer phenomena such as 

convection, and radiation that may play an important role in determining the interface 

shape. In the future, implementing these dynamics will make the model more accurate.

There are several variables such as h, k[, L, cp and p. As one may expect, the 

model is sensitive on the choice of these variables. However, these variables are known 

only approximately in real life. Therefore, choosing these variables as close to reality will 

make the model more accurate.

8.1.2 Discretization and Other Numerical Issues

The FE model used in this dissertation is obtained by a discretizing the domain 

very coarsely. It is very well known that too coarse discretization would result in 

erroneous solutions. This is one o f the main short-comings of this dissertation. 

Conceptually, the proposed solution can be applied on a finer meshed model without any 

change. In the future, it is required to see how the proposed algorithm works on models 

obtained by discretizing the domain into very small regions.

In the current implementation, the banded structure of the mass, stiffness matrices 

have not been exploited while simulating the system. This would not only increase the 

speed of computation but also would increase the accuracy. Other standard tricks such as 

nodal re-numbering to reduce the band-width of the mass and stiffness matrices would 

also result in increased speed and accuracy.
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The model is simulated using the explicit Euler scheme. In order to obtain 

reasonably accurate results, very small time-steps must be used. This results in increased 

number o f computations. There are several implicit schemes that would increase the 

speed and accuracy of simulation. Also variable time-steps can be used to further increase 

the simulation speed. Other approximations such as lumped mass choice can also increase 

speed while trading accuracy. These approaches must be considered, especially, while 

discretizing the domain very finely.

8.1.3 Control Issues

One of the improvements that would increase speed in the computation of the 

control is to use Descriptor systems theory to design a controller without inverting the 

rather large matrix M. The LQR and LQG gain computation did not take advantage of the 

special structures in the mass, stiffness matrices. This is essential if one needs to compute 

controllers for a system that has a large number of states. Actually, this is one o f the 

primary reason for the coarse discretization of the domain.

For the present model, it is found that a single controller based on a single 

linearized model is sufficient to establish the desired interface shape and move the same at 

the desired rate. However, for some other material, it may so happen that one may need 

more than one controller to achieve the desired objective. This is a challenging problem, 

especially, during the transition, when one controller takes over from the other.

There are several uncertainties in system brought about through the inexact 

knowledge of physical parameter, unmodeled dynamics, non-linearities, etc. Robust 

control design methodologies can account for these uncertainties. However, this would 

result in a very sluggish controller. If some information on the structure o f the uncertainty 

can be gathered either by performing simulation experiments, or through experience, 

robust control techniques can design controllers that are not too conservative, and that can
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yield the desired performance in presence of these uncertainties. In the future, the 

application of robust control techniques to the crystal growth problem must be examined.

In the current design, the bias input that establish non-zero steady-state is designed 

in an open-loop manner. To realize the full benefits of feedback, one has to determine bias 

input using feedback. Methods such as pseudo-integral control can tune the bias input 

using the feedback and establish the desired distribution in presence of constant 

disturbances. These approach should be researched in the future.

8.2 Concluding Remarks

Overall, this dissertation provided a new approach to solving the inverse heat- 

conduction problem during crystal growth. Several new results have been obtained. The 

simulation results presented in this dissertation demonstrate the capability o f the proposed 

methods. There are several improvements that have been suggested in Section 8 .1 to 

improve the proposed technique. Hopefully, the results in this dissertation together with 

the developments in the sensor technology will pave way to the production o f crystals 

with improved quality.
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